Skip to main content
Log in

Eventual smoothness and stabilization of renormalized radial solutions in a chemotaxis consumption system with bounded chemotactic sensitivity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, a chemotaxis model with bounded chemotactic sensitivity and signal absorption

is considered under homogeneous Neumann boundary conditions in the ball \(\Omega =B_R(0)\subset {\mathbb {R}}^n\), where \(R>0\) and \(n\ge 2\). Here, S is a scalar function with \(S(s,t)\in C^2([0,\infty )\times [0,\infty ))\). Moreover, for some positive constant K, \(|S(s,t)|\le K\) for all \(s,t\in [0,\infty )\). For all appropriately regular and radially symmetric initial data (\(u_0,v_0\)) fulfilling \(u_0\ge 0\) and \(v_0>0\), the present paper shows that there is a globally defined pair (uv) of radially symmetric functions which are continuous in \(({{\overline{\Omega }}} \backslash \{0\}) \times [0, \infty )\) and smooth in \(({{\overline{\Omega }}} \backslash \{0\}) \times (0, \infty )\), and which solve the corresponding initial-boundary value problem for (\(\star \)) with \((u(\cdot , 0), v(\cdot , 0))=\left( u_{0}, v_{0}\right) \) in an appropriate generalized sense. Moreover, in the two-dimensional setting, it is shown that these solutions are global mass-preserving in the flavor of the identity

$$\begin{aligned} \int \limits _\Omega u(x,t)=\int \limits _\Omega u_0(x)\quad \text {for all }t>0 \end{aligned}$$

and any nontrivial of these globally defined solutions eventually becomes smooth and satisfies

$$\begin{aligned} u(\cdot , t) \rightarrow \frac{1}{|\Omega |}\int \limits _\Omega u_{0},\quad \text { and } \quad v(\cdot , t) \rightarrow 0 \quad \text { as } t \rightarrow \infty \end{aligned}$$

uniformly with respect to \(x\in \Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Black, T.: Global solvability of chemotaxis-fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions. Nonlinear Anal. TMA 180, 129–153 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Cao, X.: Global classical solutions in chemotaxis(-Navier)–Stokes system with rotational flux term. J. Differ. Equ. 261, 6883–6914 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Cao, X., Ishida, S.: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation. Nonlinearity 27, 1899–1913 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55, Art. 107, 39 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Chang, S.A., Yang, P.C.: Conformal deformation of metrics on \(S^2\). J. Differ. Geom. 27, 259–296 (1988)

    Google Scholar 

  7. DiPerna, R.J., Lions, P.L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 2(130), 321–366 (1989)

    MathSciNet  MATH  Google Scholar 

  8. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Dong, Y., Li, X.: Global solutions of a two-dimensional chemotaxis system with attraction and repulsion rotational flux terms. Math. Methods Appl. Sci. 40, 2248–2264 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Dong, Y., Xiang, Z.: Global large-data generalized solutions in a chemotactic movement with rotational flux caused by two stimuli. Nonlinear Anal. Real World Appl. 41, 549–569 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein. 106, 51–69 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Ke, Y., Zheng, J.: An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation. Calc. Var. Partial Differ. Equ. 58, Art. 109, 27 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  MATH  Google Scholar 

  17. Li, D., Mu, C., Zheng, P., Lin, K.: Boundedness in a three-dimensional Keller–Segel–Stokes system involving tensor-valued sensitivity with saturation. Discrete Contin. Dyn. Syst. B 24, 831–849 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Li, F., Li, Y.: Global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux term. Z. Angew. Math. Phys. 70, 102 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Li, T., Suen, A., Winkler, M., Xue, C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25, 721–746 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Lions, P.L.: Résolution de problèmes elliptiques quasilinéaires. Arch. Rational Mech. Anal. 74, 335–353 (1980)

    MathSciNet  MATH  Google Scholar 

  21. Liu, J., Wang, Y.: Boundedness and decay property in a three-dimensional Keller–Segel–Stokes system involving tensor-valued sensitivity with saturation. J. Differ. Equ. 261, 967–999 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262, 5271–5305 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68, 68 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Tao, Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Tao, Y., Winkler, M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Wang, Y.: Global bounded weak solutions to a degenerate quasilinear chemotaxis system with rotation. Math. Methods Appl. Sci. 39, 1159–1175 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Wang, Y.: Global large-data generalized solutions in a two-dimensional chemotaxis-Stokes system with singular sensitivity. Bound. Value Probl. 2016, 177 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27, 2745–2780 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18, 421–466 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Part. Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Part. Differ. Equ. 37, 319–351 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 9(100), 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Part. Differ. Equ. 54, 3789–3828 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: The two-dimensional Keller–Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties. Math. Models Methods Appl. Sci. 26, 987–1024 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Global mass-preserving solutions in a two-dimensional chemotaxis-stokes system with rotational flux components. J. Evol. Equ. 18, 1267–1289 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Renormalized radial large-data solutions to the higher-dimensional Keller–Segel system with singular sensitivity and signal absorption. J. Differ. Equ. 264, 2310–2350 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems? Int. Math. Res. Not. (2019). https://doi.org/10.1093/imrn/rnz056

    Article  Google Scholar 

  44. Winkler, M.: A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276, 1339–1401 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Q.: Boundedness in chemotaxis systems with rotational flux terms. Math. Nachr. 289, 2323–2334 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Zheng, J.: Boundedness in a three-dimensional chemotaxis-fluid system involving tensor-valued sensitivity with saturation. J. Math. Anal. Appl. 442, 353–375 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for his/her careful reading and valuable comments. This work was finished while the author visited Institut für Mathematik, Universität Paderborn, between October 2018 and October 2019. The author is grateful for the warm hospitality. The author would like to thank the China Scholarship Council (No. 201806090118). The author is supported in part by National Natural Science Foundation of China (Nos. 11601127, 11671079 and 11701290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weirun Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W. Eventual smoothness and stabilization of renormalized radial solutions in a chemotaxis consumption system with bounded chemotactic sensitivity. Z. Angew. Math. Phys. 71, 68 (2020). https://doi.org/10.1007/s00033-020-1290-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1290-0

Keywords

Mathematics Subject Classification

Navigation