Skip to main content
Log in

Damping effects in boundary layers for rotating fluids with small viscosity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The goal of this paper is to study the system of rotating fluids between two infinite parallel plates with Dirichlet boundary conditions and with small viscosity which vanishes when the Rossby number goes to zero. We want to improve the convergence result of [18] and show the global in time convergence of the weak solution of the system of rotating fluids toward the solution of a two-dimensional damped Euler system with three components, using the decay in time of the \(H^s\)-norm (\(s>2\)) of the limiting solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Global splitting, integrability and regularity of 3D Euler and Navier–Stokes equations for uniformly rotating fluids. Eur. J. Mech. 15, 291–300 (1996)

    MATH  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133–1176 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bahouri, H., Chemin, J.-Y.: Équations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides [Transport equations for non-Lipschitz vector fields and fluid mechanics]. Arch. Rational Mech. Anal. 127(2), 159–181 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l’École Normale Supérieure 14, 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  5. Chemin, J.-Y.: Fluides parfaits incompressibles. Astérisque 230, 1–177 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and dispersion in rotating fluids. Nonlinear Partial Differential Equations and Their application, Collège de France Seminar. Studies in Mathematics and Its Applications, vol. 31, pp. 171–191. North Holland, Amsterdam (2002)

    MATH  Google Scholar 

  7. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Fluids with anisotropic viscosity, special issue for R. Temam’s 60th birthday. Math. Model. Numer. Anal. 34(2), 315–335 (2000)

    Article  MathSciNet  Google Scholar 

  8. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Ekman boundary layers in rotating fluids. ESAIM Controle optimal et calcul des variations, A tribute to J.-L. Lions 8, 441–466 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An Introduction to Rotating Fluids and to the Navier–Stokes Equations. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  10. Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non Lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1992)

    Article  Google Scholar 

  11. Cushman-Roisin, B.: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  12. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  13. Gallagher, I.: Applications of Schochet’s methods to parabolic equation. Journal de Mathématiques Pures et Appliquées 77, 989–1054 (1998)

    Article  MathSciNet  Google Scholar 

  14. Gallagher, I., Saint-Raymond, L.: Weak convergence results for inhomogeneous rotating fluid equations. Journal d’Analyse Mathématique 99, 1–34 (2006)

    Article  MathSciNet  Google Scholar 

  15. Giga, Y., Saal, J.: Uniform exponential stability of the Ekman spiral. Ark. Mat. 53(1), 105–126 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gong, S., Guo, Y., Wang, Y.-G.: Ekmann boundary layer expansions of Navier–Stokes equations with rotation. Bull. Inst. Math. Acad. Sin. (N.S.) 10(3), 375–392 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Greenspan, H.P.: The Theory of Rotating Fluids. Cambrigde University Press, Cambrigde (1968)

    MATH  Google Scholar 

  18. Grenier, E., Masmoudi, N.: Ekman layers of rotating fluid, the case of well prepared initial data. Commun. Partial Differ. Equ. 22(5–6), 953–975 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Iftimie, D.: The resolution of the Navier–Stokes equations in anisotropic spaces. Revista Matemática Iberoamericana 15, 1–36 (1999)

    Article  MathSciNet  Google Scholar 

  20. Kiselev, A., Šverák, V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. (2) 180(3), 1205–1220 (2014)

    Article  MathSciNet  Google Scholar 

  21. Koba, H.: Nonlinear stability of Ekman boundary layers in rotating stratified fluid. Mem. Am. Math. Soc. 1073, 127 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Li, W.-X., Ngo, V.-S., Xu, C.-J.: Boundary layer analysis for the fast horizontal rotating fluids. Commun. Math. Sci. 17(2), 299–338 (2019)

    Article  MathSciNet  Google Scholar 

  23. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Matematica 63, 193–248 (1933)

    Article  Google Scholar 

  24. Marcotte, F., Dormy, E., Soward, A.: On the equatorial Ekman layer. J. Fluid Mech. 803, 395–435 (2016)

    Article  MathSciNet  Google Scholar 

  25. Masmoudi, N.: The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary. Arch. Rational Mech. Anal. 142(4), 375–394 (1998)

    Article  MathSciNet  Google Scholar 

  26. Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Commun. Pure Appl. Math. 53(4), 432–483 (2000)

    Article  MathSciNet  Google Scholar 

  27. Ngo, V.-S.: Rotating fluids with small viscosity. Int. Math. Res. Not. IMRN 10, 1860–1890 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Paicu, M.: Étude asymptotique pour les fluides anisotropes en rotation rapide dans le cas périodique. Journal de Mathématiques Pures et Appliquées 83(2), 163–242 (2004)

    Article  MathSciNet  Google Scholar 

  29. Paicu, M.: Équation anisotrope de Navier–Stokes dans des espaces critiques. Revista Matemática Iberoamericana 21(1), 179–235 (2005)

    Article  MathSciNet  Google Scholar 

  30. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1979)

    Book  Google Scholar 

  31. Schmitz, W.J.: Weakly depth-dependent segments of the North Atlantic circulation. J. Mar. Res. 38, 111–133 (1980)

    Google Scholar 

  32. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114, 476–512 (1994)

    Article  MathSciNet  Google Scholar 

  33. Yudovitch, V.: Non stationary flows of an ideal incompressible fluid. Zh. Vych. Math. 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Sang Ngo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Construction of the Ekman layers

Appendix A: Construction of the Ekman layers

The construction of Ekman boundary layers is classical and can be found in [9, 18] for instance. In this paper, we will only give very brief recall of this construction. The typical approach consists in looking for the appropriate solutions of system (1.1) in the following form

$$\begin{aligned} \begin{aligned}&u^\varepsilon = u^{I,0} + u^{B,0} + {\tilde{u}}^{B,0} + \varepsilon \left( u^{I,1} + u^{B,1} + {\tilde{u}}^{B,1}\right) + \varepsilon ^2 \left( u^{I,2} + u^{B,2} + {\tilde{u}}^{B,2}\right) + \cdots \\&p^\varepsilon = \frac{1}{\varepsilon }\left( p^{I,-1} + p^{B,-1} + {\tilde{p}}^{B,-1}\right) + p^{I,0} + p^{B,0} + {\tilde{p}}^{B,0} + \varepsilon \left( p^{I,1} + p^{B,1} + {\tilde{p}}^{B,1}\right) + \cdots . \end{aligned} \end{aligned}$$
(A.1)

The “interior part” functions with the index “I” depend on \(\left( t,x_1,x_2,x_3\right) \) and the “boundary layer part” with the index “B” consists in smooth functions of the form

$$\begin{aligned}&u^{B,j} = u^{B,j}\left( t,x_1,x_2,\frac{x_3}{\varepsilon }\right) ,&p^{B,j} = p^{B,j}\left( t,x_1,x_2,\frac{x_3}{\varepsilon }\right) ,\\&{\tilde{u}}^{B,j} = {\tilde{u}}^{B,j}\left( t,x_1,x_2,\frac{1-x_3}{\varepsilon }\right) ,&{\tilde{p}}^{B,j} = {\tilde{p}}^{B,j}\left( t,x_1,x_2,\frac{1-x_3}{\varepsilon }\right) , \end{aligned}$$

and which rapidly (exponentially) decrease when the third space variable goes to infinity. The justification of the size of the boundary layers being \(\varepsilon \) and the discussion about other sizes of the layers can be found in [8, 9, 18, 26].

1.1 In the interior part of the domain

Away from the boundary, all the boundary terms in (A.1) rapidly decrease to zero. Thus, at the leading order \(\varepsilon ^{-1}\), the divergence-free conditions and the fast rotation yield

$$\begin{aligned} u^{I,0}_2 = \partial _1 p^{I,-1}, \; u^{I,0}_1 = -\partial _2 p^{I,-1}, \; \partial _3 p^{I,-1} = 0, \end{aligned}$$

which leads to

$$\begin{aligned} \left\{ \begin{aligned}&\partial _3 u^{I,0} = 0, \; \partial _3 p^{I,-1} = 0\\&\partial _1 u^{I,0}_1 + \partial _2 u^{I,0}_2 = 0. \end{aligned} \right. \end{aligned}$$
(A.2)

The limiting velocity \(u^{I,0}\) is then a two-dimensional divergence-free vector field with three components, which means that the fluid has tendency to move in columns when the rotation is fast, as predicts the Taylor–Proudman theorem.

Now, looking at the zeroth order (\(\varepsilon ^0\)), one obtains the governing equation of the fluid at the limit as \(\varepsilon \rightarrow 0\)

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t u^{I,0}_1 + u^{I,0}_h\cdot \nabla _h u^{I,0}_1 - u^{I,1}_2 + \partial _1 p^{I,0} = 0\\&\partial _t u^{I,0}_2 + u^{I,0}_h\cdot \nabla _h u^{I,0}_2 + u^{I,1}_1 + \partial _2 p^{I,0} = 0\\&\partial _t u^{I,0}_3 + u^{I,0}_h\cdot \nabla _h u^{I,0}_3 + \partial _3 p^{I,0} = 0. \end{aligned} \right. \end{aligned}$$
(A.3)

Here, we remark that the fast rotation implies the action of the first-order term, i.e., the added vector field \(\left( -u^{I,1}_2, u^{I,1}_1, 0\right) \), on the limiting behavior of the fluid. In the next paragraph, we will show that the interaction with the boundary allows to explicitly calculate this vector field, which turns out to be a dissipative term (the Ekman pumping). We also remark that \(p^{I,0}\) is independent of \(x_3\), so under the hypothesis of Theorems 1.1 and 1.2 , we deduce from the third equation of system (A.3) that \(u^{I,0}_3 \equiv 0\).

1.2 In the Ekman boundary layers

We will focus on the boundary layer near \(\left\{ x_3 = 0\right\} \). The other layer near \(\left\{ x_3 =1\right\} \) can be obtained in a similar way. Performing the change of variable \(y = \dfrac{x_3}{\varepsilon }\), we deduce the following “divergence-free properties” of \(u^{B,j}\), for any \(j \ge 0\),

$$\begin{aligned} \left\{ \begin{aligned}&\partial _y u^{B,0}_3 = 0\\&\partial _1 u^{B,j}_1 + \partial _2 u^{B,j}_2 + \partial _y u^{B,j+1}_3 = 0, \quad \forall \, j\ge 0. \end{aligned} \right. \end{aligned}$$
(A.4)

We remark that the first equation of (A.4) implies that \(u^{B,0}_3 \equiv 0\) because it goes to zero as \(y \rightarrow +\infty \).

The Dirichlet boundary condition \(u^\varepsilon (t,x_1,x_2,0) = 0\) is rewritten as follows

$$\begin{aligned} u^{B,j}(t,x_1,x_2,0) = -u^{I,j}(t,x_1,x_2,0), \quad \forall \, j\ge 0, \end{aligned}$$
(A.5)

which implies \(u^{I,0}_3 \equiv 0\), since \(u^{I,0}_3\) is independent of \(x_3\) and \(u^{I,0}(t,x_1,x_2,0) = -u^{B,0}(t,x_1,x_2,0) = 0\).

Now, putting the Ansatz into the first equation of (1.1) and looking at the leading order \(\varepsilon ^{-2}\), we simply get

$$\begin{aligned} \partial _y p^{B,-1} = 0, \end{aligned}$$

and so, \(p^{B,-1} = 0\) since \(p^{B,-1} \rightarrow 0\) as \(y\rightarrow +\infty \). This is a classical principle of fluid mechanics which claims that the pressure does not vary in a boundary layer. At the next order \(\varepsilon ^{-1}\), combining the boundary condition (A.5) and the fact that \(u^{I,0} = u^{I,0}(t,x_1,x_2)\) is independent of \(x_3\), we recover the following system

$$\begin{aligned} \left\{ \begin{aligned}&\beta \partial _y^2 u^{B,0}_1 + u^{B,0}_2 = 0\\&\beta \partial _y^2 u^{B,0}_2 - u^{B,0}_1 = 0\\&u^{B,0}_1\vert _{y=0} = -u^{I,0}_1, \; u^{B,0}_2\vert _{y=0} = -u^{I,0}_2\\&\lim _{y\rightarrow +\infty } u^{B,0}_1 = \lim _{y\rightarrow +\infty } u^{B,0}_2 = 0. \end{aligned} \right. \end{aligned}$$
(A.6)

This system can be explicitly solved and that gives

$$\begin{aligned} \left\{ \begin{aligned}&u^{B,0}_1 = -\, {\mathrm{e}}^{-\frac{y}{\sqrt{2\beta }}} \left( u^{I,0}_1 \cos \frac{y}{\sqrt{2\beta }} + u^{I,0}_2 \sin \frac{y}{\sqrt{2\beta }}\right) = -\, {\mathrm{e}}^{-\frac{x_3}{\varepsilon \sqrt{2\beta }}} \left( u^{I,0}_1 \cos \frac{x_3}{\varepsilon \sqrt{2\beta }} + u^{I,0}_2 \sin \frac{x_3}{\varepsilon \sqrt{2\beta }}\right) \\&u^{B,0}_2 = -\, {\mathrm{e}}^{-\frac{y}{\sqrt{2\beta }}} \left( u^{I,0}_2 \cos \frac{y}{\sqrt{2\beta }} - u^{I,0}_1 \sin \frac{y}{\sqrt{2\beta }}\right) = -\, {\mathrm{e}}^{-\frac{x_3}{\varepsilon \sqrt{2\beta }}} \left( u^{I,0}_2 \cos \frac{x_3}{\varepsilon \sqrt{2\beta }} - u^{I,0}_1 \sin \frac{x_3}{\varepsilon \sqrt{2\beta }}\right) . \end{aligned} \right. \end{aligned}$$
(A.7)

Using (A.4), (A.7) and the fact that \(\partial _1 u^{I,0}_1 + \partial _2 u^{I,0}_2 = 0\), we have

$$\begin{aligned} \partial _y u^{B,1}_3 = - \partial _1 u^{B,0}_1 - \partial _2 u^{B,0}_2 = \exp \left( -\frac{y}{\sqrt{2\beta }}\right) \sin \left( \frac{y}{\sqrt{2\beta }}\right) \text{ curl }\,u^{I,0}_h, \end{aligned}$$

where \(\text{ curl }\,u^{I,0}_h = \partial _1 u^{I,0}_2 - \partial _2 u^{I,0}_1\). Integrating the above equation with respect to y and recalling that \(u^{B,1}_3 \rightarrow 0\) as \(y\rightarrow +\infty \), we obtain

$$\begin{aligned} u^{B,1}_3 = -\sqrt{\beta } {\mathrm{e}}^{-\frac{y}{\sqrt{2\beta }}} \sin \left( \frac{y}{\sqrt{2\beta }} + \frac{\pi }{4}\right) \text{ curl }\,u^{I,0}_h = -\sqrt{\beta } {\mathrm{e}}^{-\frac{x_3}{\varepsilon \sqrt{2\beta }}} \sin \left( \frac{x_3}{\varepsilon \sqrt{2\beta }} + \frac{\pi }{4}\right) \text{ curl }\,u^{I,0}_h. \end{aligned}$$
(A.8)

Remark A.1

We remark that unlike the irrotational case where the boundary layers are described by the Prandtl equations, in this case, the main boundary layer term \(\left( u^{B,0}_1,u^{B,0}_2,u^{B,1}_3\right) \) can be explicitly computed from the limiting velocity in the interior domain, which allows to directly treat these layers without using the Prandtl equations. We also remark that in the case where the rotation axis is not \(e_3\), the main boundary layer term \(\left( u^{B,0}_1,u^{B,0}_2,u^{B,1}_3\right) \) can be described by an evolutionary Prandtl-like system and will be much more difficult to study. We refer for example to [22] for more details.

The same arguments near the boundary \(\left\{ x_3 = 1\right\} \) lead to \({\tilde{p}}^{B,-1} = 0\) and

$$\begin{aligned} \left\{ \begin{aligned}&{\tilde{u}}^{B,0}_1 = -\, {\mathrm{e}}^{-\frac{1-x_3}{\varepsilon \sqrt{2\beta }}} \left( u^{I,0}_1 \cos \frac{1-x_3}{\varepsilon \sqrt{2\beta }} + u^{I,0}_2 \sin \frac{1-x_3}{\varepsilon \sqrt{2\beta }}\right) \\&{\tilde{u}}^{B,0}_2 = -\, {\mathrm{e}}^{-\frac{1-x_3}{\varepsilon \sqrt{2\beta }}} \left( u^{I,0}_2 \cos \frac{1-x_3}{\varepsilon \sqrt{2\beta }} - u^{I,0}_1 \sin \frac{1-x_3}{\varepsilon \sqrt{2\beta }}\right) \\&{\tilde{u}}^{B,1}_3 = \sqrt{\beta } {\mathrm{e}}^{-\frac{1-x_3}{\varepsilon \sqrt{2\beta }}} \sin \left( \frac{1-x_3}{\varepsilon \sqrt{2\beta }} + \frac{\pi }{4}\right) \text{ curl }\,u^{I,0}_h. \end{aligned} \right. \end{aligned}$$
(A.9)

We come back to (A.3). Taking \(\text{ curl }\,u^{I,0}_h = \partial _1 u^{I,0}_2 - \partial _2 u^{I,0}_1\), we have

$$\begin{aligned} \partial _t \text{ curl }\,u^{I,0}_h + u^{I,0}_h \cdot \nabla _h \text{ curl }\,u^{I,0}_h = - \partial _1 u^{I,1}_1 - \partial _2 u^{I,1}_2 = \partial _3 u^{I,1}_3. \end{aligned}$$
(A.10)

Since \(u^{I,0}\) is independent of \(x_3\), by integrating (A.10) with respect to \(x_3\) over [0, 1], one gets

$$\begin{aligned} \partial _t \text{ curl }\,u^{I,0}_h + u^{I,0}_h \cdot \nabla _h \text{ curl }\,u^{I,0}_h = {u^{I,1}_3}_{\vert _{x_3=1}} - {u^{I,1}_3}_{\vert _{x_3=0}} = {u^{B,1}_3}_{\vert _{x_3=0}} - {\tilde{u}}^{B,1}_3{}_{\vert _{x_3=1}} = -\sqrt{2\beta } \text{ curl }\,u^{I,0}_h. \end{aligned}$$

Using the Biot–Savart law, we can finally rewrite system (A.3) in the same form as (1.3)

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t u^{I,0}_1 + u^{I,0}_h\cdot \nabla _h u^{I,0}_1 + \sqrt{2\beta }\, u^{I,0}_1 + \partial _1 q = 0\\&\partial _t u^{I,0}_2 + u^{I,0}_h\cdot \nabla _h u^{I,0}_2 + \sqrt{2\beta }\, u^{I,0}_2 + \partial _2 q = 0\\&\partial _3 u^{I,0} \equiv 0, \; u^{I,0}_3 \equiv 0,\\&\partial _1 u^{I,0}_1 + \partial _2 u^{I,0}_2 = 0. \end{aligned} \right. \end{aligned}$$
(A.11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, VS. Damping effects in boundary layers for rotating fluids with small viscosity. Z. Angew. Math. Phys. 71, 64 (2020). https://doi.org/10.1007/s00033-020-1286-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1286-9

Mathematics Subject Classification

Keywords

Navigation