Skip to main content
Log in

Three-dimensional analytical modeling for small-geometry AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A simple physics-based three-dimensional (3-D) analytical model for AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs) is presented. The model accurately predicts the short-channel effects (SCEs) in the channel region for various device dimensions, viz. channel length and width, by solving the three-dimensional Poisson equation. The effects of the barrier layer (AlInSb) thickness and the high doping concentration on the threshold voltage are also considered. Analytical expressions for the surface potential and threshold voltage are derived, and the analytical results closely match those obtained from Sentaurus technology computer-aided design (TCAD) simulations. The drain current and transconductance of the AlInSb/AlSb/InSb double-gate HEMT device are compared with experimental data obtained for a quantum-well field-effect transistor (QWFET). The proposed AlInSb/AlSb/InSb double-gate HEMT shows excellent properties for use in high-speed and low-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Critchlow, D.L.: MOSFET scaling-the driver of VLSI technology. Proc. IEEE 87(4), 659–667 (1999)

    Article  Google Scholar 

  2. Ross, R.L., Svensson, S.P., Lugli, P.: Pseudomorphic HEMT Technology and Applications. Springer, New York (1996)

    Book  Google Scholar 

  3. William, L.: Fundamentals of III–V Devices HBT’s, MESFETs, and HFETs/HEMTs. Books Express, Seller (1999)

    Google Scholar 

  4. Dingle, R., Störmer, H.L., Gossard, A.C., Wiegmann, W.: Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Am. Inst. Phys. 33(7), 665–667 (1978)

    Google Scholar 

  5. Adachi, S.: Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors. Wiley, Hoboken (2009)

    Book  Google Scholar 

  6. Kumar, S.P., Agrawal, A., Chaujar, R., Gupta, M., Gupta, R.S.: Analytical modeling and simulation of subthreshold behavior in nanoscale dual material gate AlGaN/GaN HEMT. Superlatt. Microstruct. 44(1), 37–53 (2008)

    Article  Google Scholar 

  7. Kumar, S.P., Agrawal, A., Kabra, S., Gupta, M., Gupta, R.S.: An analysis for AlGaN/GaN modulation doped field effect transistor using accurate velocity-field dependence for high power microwave frequency applications. Microelectr. J. 37(11), 1339–1346 (2006)

    Article  Google Scholar 

  8. Bin Kashem, M.T., Subrina, S.: Analytical modeling of channel potential and threshold voltage of triple material gate AlGaN/GaN HEMT including trapped and polarization-induced charges. Int. J. Numer. Model Electron Netw. Dev. Fields 32(1), 2476 (2019)

    Article  Google Scholar 

  9. Ashley, T., et al.: High-performance InSb based quantum well field effect transistors for low-power dissipation applications. Tech. Dig. (2009). https://doi.org/10.1109/IEDM.2009.5424207

    Article  Google Scholar 

  10. Ashley, T., Buckle, L., Datta, S., Emeny, M.T., Hayes, D.G., Hilton, K.P., Jefferies, R., Martin, T.: Heterogeneous InSb quantum well transistors on silicon for ultra-high-speed, low power logic applications. IEEE Electron. Lett. 43(14), 779 (2007)

    Article  Google Scholar 

  11. Ashley, T., et al.: InSb-based Quantum Well Transistors for High Speed, Low Power Applications. Growth, Lakeland (2005)

    Google Scholar 

  12. Mishima, T.D., Edirisooriya, M., Santos, M.B.: Reduction of microtwin defects for high-electron-mobility InSb quantum wells. Appl. Phys. Lett. 91(6), 26106 (2007)

    Article  Google Scholar 

  13. Pooley, O.J., et al.: Quantum well mobility and the effect of gate dielectrics in remote doped InSb/AlxIn1-xSb heterostructures. Semicond. Sci. Technol. 25(12), 125005 (2010)

    Article  Google Scholar 

  14. Zhang, Y., Zhang, Y., Wang, C., Zeng, Y.: Transport properties in AlInSb/InAsSb heterostructures. J. Appl. Phys. 114(24), 243710 (2013)

    Article  Google Scholar 

  15. Vasallo, B., Wichmann, N., Bollaert, S., et al.: Comparison between the dynamic performance of double- and single-gate AlInAs/InGaAs HEMTs. IEEE Trans. Electron Devices 54(11), 2815–2822 (2007)

    Article  Google Scholar 

  16. Awano, Y., Kosugi, M., Kosemura, K., Mimura, T., Abe, M.: Short-channel effects in subquarter-micrometer-gate HEMT’s: simulation and experiment. IEEE Trans. Electron Devices 36(10), 2260–2266 (1989)

    Article  Google Scholar 

  17. Kandasamy, S.: and Balamurugan, NB: Modeling and simulation of dual-material-gate AlGaN/GaN high-electron-mobility transistor using finite difference method. Int. J. Numer. Model. (2019). https://doi.org/10.1002/jnm.2546

    Article  Google Scholar 

  18. Rathi, S., Jogi, J., Gupta, M., Gupta, R.S.: Modeling of hetero-interface potential and threshold voltage for tied and separate nanoscale InAlAs-InGaAs symmetric double-gate HEMT. Microelectron. Reliab. 49(12), 1508–1514 (2009)

    Article  Google Scholar 

  19. Kumar, S.P., Agrawal, A., Chaujar, R., Kabra, S., Gupta, M., Gupta, R.S.: Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson’s equation. Microelectron. J. 38(10–11), 1013–1020 (2007)

    Article  Google Scholar 

  20. Delhaye, G., Desplanque, L., Wallart, X.: Preliminary investigations on the Te-doped AlInSb/GaInSb heterostructures for high electron mobility transistor (HEMT) applications. In: International Conference on Indium Phosphide and Related Materials, pp. 1–3. (2008).

  21. Kroemer, H.: The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E 20(3–4), 196–203 (2004)

    Article  Google Scholar 

  22. Sentaurus Device User Guide. Synopsys Inc., Version K-2015.06, June 2015.

  23. Kreyzig, E.: Advanced Engineering Mathematics, 7th edn. Wiley, New York (1993)

    Google Scholar 

  24. Pierret, R.F., Lundstrom, M.S.: Correspondence between MOS and modulation-doped structures. IEEE Trans. Electron Devices 31(3), 383–385 (1984)

    Article  Google Scholar 

  25. Karmalkar, S.: A new equivalent MOSFET representation of a HEMT to analytically model nonlinear charge control for simulation of HEMT devices and circuits. IEEE Trans. Electron Devices 44(5), 862–868 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Venish Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venish Kumar, T., Balamurugan, N.B. Three-dimensional analytical modeling for small-geometry AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs). J Comput Electron 19, 1107–1115 (2020). https://doi.org/10.1007/s10825-020-01498-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01498-2

Keywords

Navigation