Skip to main content
Log in

Effect of the alkyl chain length on the optoelectronic properties of organic dyes: theoretical approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In recent years, investigating organic compounds for Dye Sensitized Solar Cells (DSSCs) applications has received particular attention for its interesting optoelectronics properties. In this article, we have conducted a theoretical study on a series of D–π–A molecules, which have carbazole as a donor (D) and cyanoacrylic acid as acceptor (A) linked by a conjugated bridge. Theoretical calculations were conducted using Density Functional Theory (DFT) and Time-Dependent-DFT to evaluate the substitution effect of linear chains and to elucidate the effects of alkyl chain length (R: H, CH3 to C6H13). We have studied the geometrical structures, the electronic and optical properties, the conduction band shift, as well as the charge transfer parameters: IP, EA, PEE, HEP, λ, LHE, Voc, ΔGinject and ΔGreg of the studied dyes. According to the results obtained, the substitution of hydrogen H (Dye 1) by the methyl group CH3 (Dye 2) has, on the one hand, a significant effect on the values of the energies HOMO and LUMO, and on the other hand, the absorption peak is redshifted and the contribution of the electronic transition (H → L) has been improved (664.17 nm and 70%, respectively). However, the substitution of CH3 (Dye 2) by the other alkyl groups CnH2n+1 (n = 2 to 6) (Dye 3 to Dye 7) has low effects. The best results are obtained by substitution with methyl CH3, and the increase in chain length, which will require additional computing time, has a low effect on the properties of the dyes studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hlel, A., Mabrouk, A., Chemek, M., Ben Khalifa, I., Alimi, K.: A DFT study of charge-transfer and opto-electronic properties of some new materials involving carbazole units. Comput. Condens. Matter. 3, 30–40 (2015). https://doi.org/10.1016/j.cocom.2015.02.001

    Article  Google Scholar 

  2. Mao, M., Li, Q.-S., Zhang, X.-L., Wu, G.-H., Dai, C.-G., Ding, Y., Dai, S.-Y., Song, Q.-H.: Effects of donors of Bodipy dyes on the performance of dye-sensitized solar cells. Dyes Pigments 141, 148–160 (2017)

    Article  Google Scholar 

  3. Kiymaz, D., Sezgin, M., Sefer, E., Zafer, C., Koyuncu, S.: Carbazole based DA–π–A chromophores for dye sensitized solar cells: effect of the side alkyl chain length on device performance. Int. J. Hydrog. Energy 42, 8569–8575 (2017)

    Article  Google Scholar 

  4. Toufik, H., Bouzzine, S.M., Lamchouri, F., Nawdali, M., Hamidi, M., Bouachrine, M.: Density functional theory study of new materials based on thiophene and oxathiazole in their neutral and doped states. J. Mater. 3, 286–293 (2012)

    Google Scholar 

  5. Lu, T.-F., Li, W., Zhang, H.-X.: Rational design of metal-free organic D–π–A dyes in dye-sensitized solar cells: Insight from density functional theory (DFT) and time-dependent DFT (TD-DFT) investigations. Org. Electron. 59, 131–139 (2018)

    Article  Google Scholar 

  6. Kim, H.S., Song, E., Lee, S.B., Kang, I.-N., Cho, K., Hwang, D.-H.: Effect of methyl substitution on the diketopyrrolopyrrole-based semiconducting polymers for organic thin film transistors. Org. Electron. 56, 129–138 (2018)

    Article  Google Scholar 

  7. Boschloo, G., Häggman, L., Hagfeldt, A.: Quantification of the effect of 4-tert-butylpyridine addition to I/I3 redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J. Phys. Chem. B. 110, 13144–13150 (2006). https://doi.org/10.1021/jp0619641

    Article  Google Scholar 

  8. Gaussian09, R.A.: 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc Wallingford CT. 121, 150–166 (2009)

  9. Becke, A.D.: Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992)

    Article  Google Scholar 

  10. Bourouina, A., Rekhis, M., Trari, M.: DFT/TD-DFT study of ruthenium bipyridyl-based dyes with a chalcogen donor (X = S, Se, Te), for application as dye-sensitized solar cells. Polyhedron 127, 217–224 (2017)

    Article  Google Scholar 

  11. Toufik, H., Bouzzine, S.M., Ninis, O., Lamchouri, F., Aberkane, M., Hamidi, M., Bouachrine, M.: Opto-electronic properties and molecular design of new materials based on pyrrole studied by DFT. Res. Chem. Intermed. 38, 1375–1388 (2012)

    Article  Google Scholar 

  12. Fitri, A., Benjelloun, A.T., Benzakour, M., Mcharfi, M., Hamidi, M., Bouachrine, M.: Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 132, 232–238 (2014)

    Article  Google Scholar 

  13. Fahim, Z.M.E., Bouzzine, S.M., Aicha, Y.A., Bouachrine, M., Hamidi, M.: The bridged effect on the geometric, optoelectronic and charge transfer properties of the triphenylamine–bithiophene-based dyes: a DFT study. Res. Chem. Intermed. 44, 2009–2023 (2018)

    Article  Google Scholar 

  14. Zhang, H., Chen, Z.-E., Hu, J., Hong, Y.: Novel metal-free organic dyes containing linear planar 11, 12-dihydroindolo [2, 3-a] carbazole donor for dye-sensitized solar cells: effects of π spacer and alkyl chain. Dyes Pigments 164, 213–221 (2019)

    Article  Google Scholar 

  15. Mohbiya, D.R., Sekar, N.: Electronic structure and spectral properties of indole based fluorescent styryl dyes: comprehensive study on linear and non-linear optical properties by DFT/TDDFT method. Comput. Theor. Chem. 1139, 90–101 (2018)

    Article  Google Scholar 

  16. Boschloo, G., Hagfeldt, A.: Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009)

    Article  Google Scholar 

  17. Asbury, J.B., Wang, Y.-Q., Hao, E., Ghosh, H.N., Lian, T.: Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res. Chem. Intermed. 27, 393–406 (2001)

    Article  Google Scholar 

  18. Li, G., Luo, Z., Sun, C., Wu, K., Gong, S., Qiu, B., Li, Y., Yang, C.: Systematic investigation of methyl substitution effect on physicochemical properties and photovoltaic performance in nonfullerene small-molecule electron acceptors. Dyes Pigments 164, 126–132 (2019)

    Article  Google Scholar 

  19. De Leeuw, D.M., Simenon, M.M.J., Brown, A.R., Einerhand, R.E.F.: Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997)

    Article  Google Scholar 

  20. Xu, Z., Li, Y., Zhang, W., Yuan, S., Hao, L., Xu, T., Lu, X.: DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 212, 272–280 (2019)

    Article  Google Scholar 

  21. Bourass, M., Amine, A., Hamidi, M., Bouachrine, M.: New organic dyes based on phenylenevinylene for solar cells: DFT and TD-DFT investigation. Karbala Int. J. Mod. Sci. 3, 75–82 (2017)

    Article  Google Scholar 

  22. Bourass, M., Benjelloun, A.T., Benzakour, M., Mcharfi, M., Jhilal, F., Serein-Spirau, F., Sotiropoulos, J.M., Bouachrine, M.: DFT/TD-DFT characterization of conjugational electronic structures and spectral properties of materials based on thieno [3, 2-b][1] benzothiophene for organic photovoltaic and solar cell applications. J. Saudi Chem. Soc. 21, 563–574 (2017)

    Article  Google Scholar 

  23. Han, Y.-K.: Comment on “time-dependent density functional study of electroluminescent polymers”. J. Phys. Chem. A. 108, 9316–9317 (2004)

    Article  Google Scholar 

  24. Bourass, M., Benjelloun, A.T., Hamidi, M., Benzakour, M., Mcharfi, M., Sfaira, M., Serein-Spirau, F., Lere-Porte, J.-P., Sotiropoulos, J.-M., Bouzzine, S.M.: DFT theoretical investigations of π-conjugated molecules based on thienopyrazine and different acceptor moieties for organic photovoltaic cells. J. Saudi Chem. Soc. 20, S415–S425 (2016)

    Article  Google Scholar 

  25. Lazrak, M., Toufik, H., Bouzzine, S.M., Bih, H., Lamchouri, F.: Effect of π-spacers on the optoelectronic properties of triphenylamine-based organic dyes: theoretical study. RHAZES Green Appl. Chem. 2, 23–32 (2018)

    Google Scholar 

  26. Al-Fahdan, N.S., Asiri, A.M., Irfan, A., Basaif, S.A., El-Shishtawy, R.M.: An electro-optical and electron injection study of benzothiazole-based squaraine dyes as efficient dye-sensitized solar cell materials: a first principles study. J Mol Model 20, 2517 (2014)

    Article  Google Scholar 

  27. Sun, L., Bai, F.-Q., Zhao, Z.-X., Yang, B.-Z., Zhang, H.-X.: Density functional study on the effect of substituent group for the monomer of donor–acceptor copolymer. J. Polym. Sci. Part B Polym. Phys. 48, 2099–2107 (2010)

    Article  Google Scholar 

  28. Marcus, R.A.: Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599 (1993)

    Article  Google Scholar 

  29. Hsu, C.-P.: The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 42, 509–518 (2009)

    Article  Google Scholar 

  30. Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., Tachiya, M.: Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B. 108, 4818–4822 (2004)

    Article  Google Scholar 

  31. Sun, L.L., Zhang, T., Wang, J., Li, H., Yan, L.K., Su, Z.M.: Exploring the influence of electron donating/withdrawing groups on hexamolybdate-based derivatives for efficient p-type dye-sensitized solar cells (DSSCs). RSC Adv. 5, 39821–39827 (2015)

    Article  Google Scholar 

  32. Odobel, F., Le Pleux, L., Pellegrin, Y., Blart, E.: New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc. Chem. Res. 43, 1063–1071 (2010)

    Article  Google Scholar 

  33. Xu, T., Qiao, Q.: Conjugated polymer–inorganic semiconductor hybrid solar cells. Energy Environ. Sci. 4, 2700–2720 (2011)

    Article  Google Scholar 

  34. Li, H., Wang, X., Li, Z.: Theoretical study of the effects of different substituents of tetrathiafulvalene derivatives on charge transport. Chin. Sci. Bull. 57, 4049–4056 (2012)

    Article  Google Scholar 

  35. Zhang, Q., Guo, X., Huang, X., Huang, S., Li, D., Luo, Y., Shen, Q., Toyoda, T., Meng, Q.: Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13, 4659–4667 (2011)

    Article  Google Scholar 

  36. DiMarco, B.N., Troian-Gautier, L., Sampaio, R.N., Meyer, G.J.: Dye-sensitized electron transfer from TiO2 to oxidized triphenylamines that follows first-order kinetics. Chem. Sci. 9, 940–949 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Toufik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennehary, S., Toufik, H., Bouzzine, S.M. et al. Effect of the alkyl chain length on the optoelectronic properties of organic dyes: theoretical approach. J Comput Electron 19, 840–848 (2020). https://doi.org/10.1007/s10825-020-01486-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01486-6

Keywords

Navigation