Skip to main content
Log in

A first-principles study of the stability and structural, optical, and thermodynamic properties of hydrogenated silicene

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The structural, electronic, optical, and thermodynamic properties of hydrogenated silicene (silicane) in three stable structures, viz. chair (C), boat (B), and tricycle (T), are studied using first-principles calculations. The band structure and density of states are discussed. The stability is analyzed using binding energy and phonon calculations. Silicane is highly temperature sensitive compared with silicene. The optical properties are studied for parallel (E ⊥ c) and perpendicular (E ∥ c) polarization of the electric field in the energy range of 0–20 eV. Four parameters, namely the dielectric constant ε(0), refractive index n(0), birefringence Δn(0), and plasmon energy (ћωp), are calculated for the first time. The calculated values are in good agreement with available reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cahangirov, S., Topsakal, M., Aktu, E., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 236804, 1–4 (2009)

    Google Scholar 

  2. Zhuo, Z., Wu, X., Yang, J.: Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility. Nanoscale 10, 1265–1271 (2018)

    Google Scholar 

  3. Liu, C.C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    Google Scholar 

  4. Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin–orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)

    Google Scholar 

  5. Ezawa, M.: Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012)

    Google Scholar 

  6. Wang, Y., Zheng, J., Ni, Z., Fei, R., Liu, Q., Quhe, R., Chengyong, X., Zhou, J., Zhengxiang, G., Lu, J.: Half-metallic silicene and germanene nanoribbons: towards high-performance spintronics device. NANO 7, 1250037 (2012)

    Google Scholar 

  7. Jose, D., Datta, A.: Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 47, 593 (2013)

    Google Scholar 

  8. Balendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M.: Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640 (2015)

    Google Scholar 

  9. Houssa, M., Pourtois, G., Heyns, M., Afanas, V., Stesmans, A.: Electronic properties of silicene: insights from first-principles modeling. J. Electrochem. Soc. 158, 185–193 (2011)

    Google Scholar 

  10. Fang, D.Q., Zhang, S.L., Xu, H.: Tuning the electronic and magnetic properties of zigzag silicene nanoribbons by edge hydrogenation and doping. RSC Adv. 3, 24075 (2013)

    Google Scholar 

  11. Qiu, J., Fu, H., Xu, Y., Zhou, Q., Meng, S., Li, H., Chen, L., Wu, K.: From silicene to half-silicane by hydrogenation. ACS Nano 9, 11192 (2015)

    Google Scholar 

  12. Wang, W., Olovsson, W., Uhrberg, R.I.G.: Band structure of hydrogenated silicene on Ag(111): evidence for half-silicane. Phys. Rev. B 93, 081406 (2016)

    Google Scholar 

  13. Qiu, J., Fu, H., Xu, Y., Oreshkin, A.I., Shao, T., Li, H., Meng, S., Chen, L., Wu, K.: Ordered and reversible hydrogenation of silicene. Phys. Rev. Lett. 114, 126101 (2015)

    Google Scholar 

  14. Voon, L.C.L.Y., Sandberg, E., Aga, R.S., Farajian, A.A.: Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 97, 163114 (2010)

    Google Scholar 

  15. Houssa, M., Scalise, E., Sankaran, K., Pourtois, G., Afanas, V.V., Stesmans, A.: Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98, 223107 (2011)

    Google Scholar 

  16. Ju, W., Li, T., Hou, Z., Wang, H., Cui, H., Li, X.: Exotic d0 magnetism in partial hydrogenated silicene. Appl. Phys. Lett. 108, 212403 (2016)

    Google Scholar 

  17. Monterola, E.D., Paylag, N.T., Paylag, G.J., Bantaculo, R.V.: Anomalous effect on the phononic thermal conductivity of silicene nanoribbon by hydrogenation. Adv. Mater. Res. 1105, 110–114 (2015)

    Google Scholar 

  18. Ju, W., Li, T., Su, X., Cui, H., Li, H.: Engineering magnetism and electronic properties of silicene by changing adsorption coverage. Appl. Surf. Sci. 384, 65–72 (2016)

    Google Scholar 

  19. Hussain, T., Kaewmaraya, T., Chakraborty, S., Ahuja, R.: Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. Phys. Chem. Chem. Phys. 15, 18900 (2013)

    Google Scholar 

  20. Liu, Z., Wu, X., Luo, T.: The impact of hydrogenation on the thermal transport of silicene. 2D Mater. 4(2), 025002 (2017)

    Google Scholar 

  21. Zhang, P., Li, X.D., Hu, C.H., Wu, S.Q., Zhu, Z.Z.: First-principles studies of the hydrogenation effects in silicene sheets. Phys. Lett. A 376, 1230–1233 (2012)

    Google Scholar 

  22. Nguyen, M.T., Phong, P.N., Tuyen, N.D.: Hydrogenated graphene and hydrogenated silicene: computational insights. Chem. Phys. Chem. 16, 1733–1738 (2015)

    Google Scholar 

  23. Fischetti, M.V., Vandenberghe, W.G.: Mermin–Wagner theorem, flexural modes, and degraded carrier mobility in two-dimensional crystals with broken horizontal mirror symmetry. Phys. Rev. B 93(15), 155413 (2016)

    Google Scholar 

  24. Gaddemane, G., Vandenberghe, W.G., Van De Put, M.L., Chen, E., Fischetti, M.V.: Monte-Carlo study of electronic transport in non-σh-symmetric two-dimensional materials: silicene and germanene. J. Appl. Phys. 124, 044306 (2018)

    Google Scholar 

  25. Khatami, M.M., Gaddemane, G., Van De Put, M.L., Fischetti, M.V., Moravvej-Farshi, M.K., Pourfath, M., Vandenberghe, W.G.: Electronic transport properties of silicane determined from first principles. Materials 12, 2935 (2019)

    Google Scholar 

  26. Osborn, T.H., Farajian, A.A., Pupysheva, O.V., Aga, R.S., Voon, L.C.L.Y.: Ab initio simulations of silicene hydrogenation. Chem. Phys. Lett. 511, 101–105 (2011)

    Google Scholar 

  27. Kumar, V., Santosh, R., Chandra, S.: First-principle calculations of structural, electronic, optical and thermal properties of hydrogenated graphene. Mater. Sci. Eng. B 226, 64–71 (2017)

    Google Scholar 

  28. Kumar, V., Santosh, R.: First-principle calculations of structural, electronic, optical and thermodynamical properties of fluorinated graphene. Mater. Sci. Eng. B 246, 127–135 (2019)

    Google Scholar 

  29. Santosh, R., Kumar, V.: The structural, electronic, optical and thermodynamical properties of hydrofluorinated graphene: first-principle calculations. Sol. Stat. Sci. 94, 70–76 (2019)

    Google Scholar 

  30. Kumar, V., Singh, B.P., Pandey, B.P.: First-principle calculations of the elastic properties of AIIBIVCV2 semiconductors. Comput. Mater. Sci. 87, 227–231 (2014)

    Google Scholar 

  31. He, C., Sun, L.Z., Zhang, C.X., Jiao, N., Zhang, K.W.: Structure, stability and electronic properties of tricycle type graphane. J. Zhong Phys. Status Solidi RRL 6, 427–429 (2012)

    Google Scholar 

  32. Reshak, A.H.: Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Sci. Rep. 7, 46415 (2017)

    Google Scholar 

  33. Reshak, A.H.: Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys. 16, 10558 (2014)

    Google Scholar 

  34. Reshak, A.H.: Chairlike and boatlike graphane: active photocatalytic water splitting solar-to-hydrogen energy conversion under UV irradiation. J. Phys. Chem. C 122(15), 8076–8081 (2018)

    Google Scholar 

  35. Reshak, A.H., Auluck, S.: Electronic and optical properties of chair-like and boat-like graphane. RSC Adv. 4, 37411 (2014)

    Google Scholar 

  36. Segall, M.D., Philip, J.D., Lindan, M.J., Probert, C.J., Pickard, P.J., Hasnip, S., Clark, J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2743 (2002)

    Google Scholar 

  37. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  38. Ceperley, D.M., Alder, M.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Google Scholar 

  39. Perdew, P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Google Scholar 

  40. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)

    Google Scholar 

  41. Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992)

    Google Scholar 

  42. Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)

    Google Scholar 

  43. Jose, D., Datta, A.: Understanding of the buckling distortions in silicene. J. Phys. Chem. C 116, 24639–24648 (2012)

    Google Scholar 

  44. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610 (2009)

    Google Scholar 

  45. Sahin, H., Topsakal, M., Ciraci, S.: Structures of fluorinated graphene and their signatures. Phys. Rev. B 83, 115432 (2011)

    Google Scholar 

  46. Sahin, H., Ataca, C., Ciraci, S.: Electronic and magnetic properties of graphane nanoribbons. Phys. Rev. B 81, 205417 (2010)

    Google Scholar 

  47. SanthiBhushan, B., Shahzad Khan, M., Srivastava, A., Shahid Khan, M.: First principle analysis of (10-boranylanthracene-9-yl) borane-based molecular single-electron transistor for high-speed low-power electronics. IEEE Trans. Electron. Devices 63, 1232–1238 (2016)

    Google Scholar 

  48. Guzman-Verri, G.G., Voon, L.C.L.Y.: Band structure of hydrogenated Si nanosheets and nanotubes. J. Phys. Condens. Matter 23, 145502 (2011)

    Google Scholar 

  49. Huang, L.F., Zeng, Z.: Lattice dynamics and disorder-induced contraction in functionalized graphene. J. Appl. Phys. 113, 083524 (2013)

    Google Scholar 

  50. Nair, R.R., Ren, W.C., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H.M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K.: Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010)

    Google Scholar 

  51. Leenaerts, O., Peelaers, H., Hernandez-Nieves, A.D., Partoens, B., Peeters, F.M.: First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010)

    Google Scholar 

  52. Momida, H., Hamada, T., Takagi, Y., Yamamoto, T., Uda, T., Ohno, T.: Dielectric constants of amorphous hafnium aluminates: first-principles study. Phys. Rev. B 75, 195105 (2007)

    Google Scholar 

  53. John, R., Merlin, B.: Optical properties of graphene, silicene, germanene, and stanene from IR to far UV—a first principles study. J. Phys. Chem. Sol. 110, 307 (2017)

    Google Scholar 

  54. Liu, Y., Shu, H., Liang, P., Cao, D., Chen, X., Lu, W.: Structural, electronic, and optical properties of hydrogenated few-layer silicene: size and stacking effects. J. Appl. Phys. 114, 094308 (2013)

    Google Scholar 

  55. Kronig, R.L.: On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926)

    Google Scholar 

  56. Shin, D., Lee, H.M., Yu, S.M., Lim, K., Jung, J.H., Kim, M., Kim, S., Han, J., Ruoff, R.S., Yoo, J.: A facile route to recover intrinsic graphene over large scale. ACS Nano 6, 7781 (2012)

    Google Scholar 

  57. Sherpa, S.D., Levitin, G., Hess, D.W.: Local work function measurements of plasma-fluorinated epitaxial graphene. Appl. Phys. Lett. 101, 111602 (2012)

    Google Scholar 

  58. Baroni, S., Gironcoli, S., Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Rajiv Shekhar, Director, IIT(ISM), Dhanbad for encouragement throughout the work and Bharthi Gajendra for helping prepare the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, R., Kumar, V. A first-principles study of the stability and structural, optical, and thermodynamic properties of hydrogenated silicene. J Comput Electron 19, 516–528 (2020). https://doi.org/10.1007/s10825-020-01487-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01487-5

Keywords

Navigation