Skip to main content

Advertisement

Log in

Theoretical modifications of the molecular structure of Aurantinidin and Betanidin dyes to improve their efficiency as dye-sensitized solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Two modifications of the molecular structures of Aurantinidin and Betanidin dyes were modeled, and the optical and electrical properties were calculated by using density functional theory (DFT) and time-dependent DFT (TD–DFT). The modification of the structures was done by connecting the units through vinyl groups and using regular electron acceptor and electron donor moieties to the original structures. It has been demonstrated that the modifications improved the electron injection properties of the molecules with higher light-harvesting efficiencies, an increase in the driving force of electron injection (\(\Delta G_{\text{inject}}\)), better regeneration energies (\(\Delta G_{\text{reg}}\)) and open-circuit photovoltages (\(V_{\text{OC}}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  2. Sharma, K., Sharma, V., Sharma, S.S.: Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13, 381 (2018). https://doi.org/10.1186/s1167-018-2760-6

    Article  Google Scholar 

  3. de Miguel, G., Wielopolski, M., Schuster, D.I., Fazio, M.A., Lee, O.P., Haley, C.K., et al.: Triazole bridges as versatile linkers in electron donor–acceptor conjugates. J. Am. Chem. Soc. 133(33), 13036–13054 (2011). https://doi.org/10.1021/ja202485s

    Article  Google Scholar 

  4. Liu, D., Kamat, P.V.: Dye-capped semiconductor nanoclusters. One-electron reduction and oxidation of thionine and cresyl violet H-aggregates electrostatically bound to SnO2 colloids. Langmuir 12(9), 2190–2195 (1996). https://doi.org/10.1021/la9510994

    Article  Google Scholar 

  5. Preat, J., Jacquemin, D., Michaux, C., Perpète, E.A.: Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem. Phys. 376(1), 56–68 (2010). https://doi.org/10.1016/j.chemphys.2010.08.001

    Article  Google Scholar 

  6. De Angelis, F., Fantacci, S., Selloni, A.: Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology 19(42), 424002 (2008). https://doi.org/10.1088/0957-4484/19/42/424002

    Article  Google Scholar 

  7. Juma, J.M., Vuai, S.A.H., Babu, N.S.E.: TD–DFT investigations on optoelectronic properties of fluorescein dye derivatives in dye-sensitized solar cells (DSSCs). Int. J. Photoenergy (2019). https://doi.org/10.1155/2019/4616198

    Article  Google Scholar 

  8. Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., et al.: Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108(15), 4818–4822 (2004). https://doi.org/10.1021/jp031260g

    Article  Google Scholar 

  9. Daeneke, T., Mozer, A.J., Uemura, Y., Makuta, S., Fekete, M., Tachibana, Y., et al.: Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 134(41), 16925–16928 (2012). https://doi.org/10.1021/ja3054578

    Article  Google Scholar 

  10. Deng, W.F.W.-Q.: Incorporation of thiadiazole derivatives as π-spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. Commun. Comput. Chem. 1(2), 152–170 (2013). https://doi.org/10.4208/cicc.2013.v1.n2.6

    Article  Google Scholar 

  11. Guo, M., Xie, K., Lin, J., Yong, Z., Yip, C.T., Zhou, L., et al.: Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ. Sci. 5(12), 9881–9888 (2012). https://doi.org/10.1039/c2ee22854h

    Article  Google Scholar 

  12. Preat, J., Hagfeldt, A., Perpète, E.A.: Investigation of the photoinduced electron injection processes for p-type triphenylamine-sensitized solar cells. Energy Environ. Sci. 4(11), 4537–4549 (2011). https://doi.org/10.1039/c1ee01638e

    Article  Google Scholar 

  13. Zhang, C.-R., Liu, Z.-J., Chen, Y.-H., Chen, H.-S., Wu, Y.-Z., Feng, W., Wang, D.-B.: DFT and TD–DFT study on structure and properties of organic dye sensitizer TA-St-CA. Curr. Appl. Phys. 10(1), 77–83 (2010). https://doi.org/10.1016/j.cap.2009.04.018

    Article  Google Scholar 

  14. Gaussian 09, Revision E.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J.: Gaussian, Inc., Wallingford CT (2016

  15. Peverati, R., Truhlar, D.G.: Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys. Chem. Chem. Phys. 14(47), 16187–16191 (2012). https://doi.org/10.1039/c2cp42576a

    Article  Google Scholar 

  16. Antonov, L.: Tautomerism in Azo and Azomethyne dyes: when and if theory meets experiment. Molecules (Basel, Switzerland) 24(12), 2252–2254 (2019). https://doi.org/10.3390/molecules24122252

    Article  Google Scholar 

  17. Frau, J., Muñoz, F., Glossman-Mitnik, D.: A conceptual DFT study of the chemical reactivity of magnesium octaethylporphyrin (MgOEP) as predicted by the minnesota family of density functionals. Química Nova 40, 402–406 (2017). https://doi.org/10.21577/0100-4042.20170004

    Article  Google Scholar 

  18. Mensa-Bonsu, G.: A TDDFT computational study of platinum complexes bound to nucleobases. MSc Thesis, University of York, England (2016). http://etheses.whiterose.ac.uk/id/eprint/12454

  19. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72(1), 650–654 (1980). https://doi.org/10.1063/1.438955

    Article  Google Scholar 

  20. Jacquemin, D., Perpète, E.A., Scalmani, G., Frisch, M.J., Kobayashi, R., Adamo, C.: Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J. Chem. Phys. 126(14), 144105 (2007). https://doi.org/10.1063/1.2715573

    Article  Google Scholar 

  21. Tian, H., Yang, X., Pan, J., Chen, R., Liu, M., Zhang, Q., et al.: A triphenylamine dye model for the study of intramolecular energy transfer and charge transfer in dye-sensitized solar cells. Adv. Func. Mater. 18(21), 3461–3468 (2008). https://doi.org/10.1002/adfm.200800516

    Article  Google Scholar 

  22. Prima, E.C., Yuliarto, B., Dipojono, H.K.: Donor-modified anthocyanin dye-sensitized solar cell with TiO2 nanoparticles density functional theory investigation. Mater. Sci. Forum 889, 178–183 (2017). https://doi.org/10.4028/www.scientific.net/MSF.889.178

    Article  Google Scholar 

  23. Obasuyi, A.R., Glossman-Mitnik, D., Flores-Holguín, N.: Electron injection in Anthocyanidin and Betalain dyes for dye-sensitized solar cells: a DFT approach. J. Comput. Electron. 18(2), 396–406 (2019). https://doi.org/10.1007/s10825-019-01331-5

    Article  Google Scholar 

  24. Biswas, S., Pramanik, A., Ahmed, T., Sahoo, S.K., Sarkar, P.: Superiority of D–A–D over D–A type of organic dyes for the application in dye-sensitized solar cell. Chem. Phys. Lett. 649, 23–28 (2016). https://doi.org/10.1016/j.cplett.2016.01.073

    Article  Google Scholar 

  25. Elegbeleye, I.F., Maluta, N.E., Maphanga, R.R.: Density functional theory studies of ruthenium dye (N3) adsorbed on a TiO2 brookite cluster for application in dye sensitized solar cells. In: Mammino, L., Ceresoli, D., Maruani, J., Brändas, E. (eds.) Advances in quantum systems in chemistry, physics, and biology. QSCP 2018. Progress in theoretical chemistry and physics, vol. 32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34941-7_8

    Chapter  Google Scholar 

  26. Kymakis, E., Amaratunga, G.A.J.: Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Sol. Energy Mater. Sol. Cells 80(4), 465–472 (2003). https://doi.org/10.1016/j.solmat.2003.08.013

    Article  Google Scholar 

  27. Lang, A.-D., Zhai, J., Huang, C.-H., Gan, L.-B., Zhao, Y.-L., Zhou, D.-J., Chen, Z.-D.: Relationship between structures and photocurrent generation properties in a series of hemicyanine congeners. J. Phys. Chem. B 102(8), 1424–1429 (1998). https://doi.org/10.1021/jp972429r

    Article  Google Scholar 

  28. El Kouari, Y., Migalska-Zalas, A., Arof, A.K., et al.: Computations of absorption spectra and nonlinear optical properties of molecules based on anthocyanidin structure. Opt. Quant. Electron. 47, 1091–1099 (2015). https://doi.org/10.1007/s11082-014-9965-4

    Article  Google Scholar 

  29. Chaudhri, N., Sawhney, N., Madhusudhan, B., Raghav, A., Sankar, M., Satapathi, S.: Effect of functional groups on sensitization of dye-sensitized solar cells (DSSCs) using free base porphyrins. J. Porphyrins Phthalocyanines 21(03), 222–230 (2017). https://doi.org/10.1142/S1088424617500390

    Article  Google Scholar 

  30. Li, Yuanchao, Mi, L., Wang, H., Li, Y., Liang, J.: Design, electron transfer process, and opto-electronic property of solar cell using triphenylamine-based D-π-A architectures. Materials 12(1), 193–226 (2019). https://doi.org/10.3390/ma12010193

    Article  Google Scholar 

  31. Zhang, C.-R., Liu, L., Zhe, J.-W., Jin, N.-Z., Ma, Y., Yuan, L.-H., et al.: The role of the conjugate bridge in electronic structures and related properties of tetrahydroquinoline for dye sensitized solar cells. Int. J. Mol. Sci. 14(3), 5461–5481 (2013). https://doi.org/10.3390/ijms14035461

    Article  Google Scholar 

  32. Li, M., Kou, L., Diao, L., Zhang, Q., Li, Z., Wu, Q., et al.: Theoretical study of WS-9-based organic sensitizers for unusual vis/NIR absorption and highly efficient dye-sensitized solar cells. J. Phys. Chem. C 119(18), 9782–9790 (2015). https://doi.org/10.1021/acs.jpcc.5b03667

    Article  Google Scholar 

  33. Ding, Z., Long, X., Dou, C., Liu, J., Wang, L.: A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells. Chem. Sci. 7(9), 6197–6202 (2016). https://doi.org/10.1039/C6SC01756H

    Article  Google Scholar 

  34. Oliveira, E.F., Silva, L.C., Lavarda, F.C.: Modifying electronic properties of ICBA through chemical substitutions for solar cell applications. Struct. Chem. 28, 1133–1140 (2017). https://doi.org/10.1007/s11224-017-0916-0

    Article  Google Scholar 

  35. Ueno, K., Saito, N.: Cyanidin bromide monohydrate (3,5,7,3“,4-” Pentahydroxyflavylium bromide monohydrate). Acta Crystallogr. Sect. B 33(1), 114–116 (1977). https://doi.org/10.1107/S0567740877002702

    Article  Google Scholar 

  36. Lakshmanakumar, M., Sriram, S., Balamurugan, D.: Performance analysis of TiO2-flavylium compound-based dye-sensitized solar cell (DSSC): a DFT–TDDFT approach. J Comput Electron 17, 1143–1152 (2018). https://doi.org/10.1007/s10825-018-1189-6

    Article  Google Scholar 

Download references

Acknowledgements

Norma Flores-Holguín and Daniel Glossman-Mitnik are CONACYT and CIMAV researchers. Aanuoluwapo Raphael Obasuyi gratefully acknowledges a Doctoral Fellowship from the National Science and Technology Council in Mexico (CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Flores-Holguín.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obasuyi, A.R., Glossman-Mitnik, D. & Flores-Holguín, N. Theoretical modifications of the molecular structure of Aurantinidin and Betanidin dyes to improve their efficiency as dye-sensitized solar cells. J Comput Electron 19, 507–515 (2020). https://doi.org/10.1007/s10825-020-01485-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01485-7

Keywords

Navigation