Skip to main content
Log in

Performance analysis of c-Si heterojunction solar cell with passivated transition metal oxides carrier-selective contacts

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Transition metal oxides (TMOs) as passivating carrier-selective contact layers are investigated for silicon heterojunction solar cells. MoOx as hole-selective layer and TiOx as an electron-selective layer are explored in detail to design a high-efficiency silicon heterojunction solar cell without any specified surface passivation layer. The thickness and optical transparency of the MoOx hole-selective layer have been evaluated through optical simulation. The impact of TMOs’ work function and their passivation quality has been examined in detail to extract the maximum conversion efficiency from silicon heterojunction solar cells. To increase the optical absorption in c-Si, the micro–nanopillar structure has also been implemented. It has been found that the barrier height at the TMO/silicon heterocontact plays a significant role in the overall performance improvement of the solar cell. The optimized cell design without doping and separate passivating layer can achieve a power conversion efficiency of ~ 22%. Our findings open the potential pathways and opportunities to obtain simplified heterojunction solar cells at lower temperatures and without impurity doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  2. Young, D.L., Nemeth, W., Grover, S., Norman, A., Lee, B.G., Stradins, P.: Carrier-selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides. In: Proceedings IEEE 40th Photovoltaic Specialists Conference (PVSC), pp. 1–5 (2014). https://doi.org/10.1109/pvsc.2014.6925147

  3. Bullock, J., Cuevas, A., Yan, D., Demaurex, B., Hessler-Wyser, A., De Wolf, S.: Amorphous silicon passivated contacts for diffused junction silicon solar cells. J. Appl. Phys. 116(16), 163706 (2014). https://doi.org/10.1063/1.4900539

    Article  Google Scholar 

  4. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., Maruyama, E.: 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4(1), 96–99 (2013)

    Article  Google Scholar 

  5. Avasthi, S., et al.: Double-heterojunction crystalline silicon solar cell fabricated at 250°C with 12.9% efficiency. In: Proceedings IEEE 40th Photovoltaic Specialists Conference (PVSC), pp. 0949–0952 (2014). https://doi.org/10.1109/pvsc.2014.6925069

  6. Bullock, J., Hettick, M., Geissbühler, J., Ong, A.J., Allen, T., Sutter-Fella, C.M., Chen, T., Ota, H., Schaler, E.W., De Wolf, S., Ballif, C., Cuevas, A., Javey, A.: Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat. Energy 1, 15031 (2016)

    Article  Google Scholar 

  7. Battaglia, C., Yin, X., Zheng, M., Sharp, I.D., Chen, T., McDonnell, S., Azcatl, A., Carraro, C., Ma, B., Maboudian, R., Wallace, R.M., Javey, A.: Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014). https://doi.org/10.1021/nl404389u

    Article  Google Scholar 

  8. Geissbühler, J., Werner, J., Martin, S., de Nicolas, L., Barraud, A.H.-W., Despeisse, M., Nicolay, S., Tomasi, A., Niesen, B., De Wolf, S., Ballif, C.: 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107(8), 081601 (2015). https://doi.org/10.1063/1.4928747

    Article  Google Scholar 

  9. Nagamatsu, K.A., Avasthi, S., Jhaveri, J., Sturm, J.C.: A 12% efficient silicon/PEDOT:PSS heterojunction solar cell fabricated at < 100°C. IEEE J. Photovolt. 4(1), 260–264 (2014). https://doi.org/10.1109/JPHOTOV.2013.2287758

    Article  Google Scholar 

  10. Mews, M., Korte, L., Rech, B.: Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Solar Energy Mater. Solar Cells 158, 77–83 (2016). https://doi.org/10.1016/j.solmat.2016.05.042

    Article  Google Scholar 

  11. Bowden, S., Das, U., Herasimenka, S., Birkmire, R.: 2008 33rd IEEE Photovolatic Specialists Conference, IEEE, pp. 1–4 (2008)

  12. Ahmad, G., Mandal, S., Barua, A.K., Bhattacharya, T.K., Roy, J.N.: Band offset reduction at defect-rich p/i interface through a wide bandgap a-SiO: H buffer layer. IEEE J. Photovolt. 7(2), 414–420 (2017)

    Article  Google Scholar 

  13. Blacka, L.E., van de Loo, B.W.H., Macco, B., Melskens, J., Berghuis, W.J.H., Kessels, W.M.M.: Explorative studies of novel silicon surface passivation materials: considerations and lessons learned. Solar Energy Mater. Solar Cells 188, 182–189 (2018)

    Article  Google Scholar 

  14. Yu, J., Fua, Y., Zhu, L., Yang, Z., Yang, X., Ding, L., Zeng, Y., Yan, B., Tang, J., Gao, P., Ye, J.: Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide. Soc. Sci. Med. 159(1), 704–709 (2018). https://doi.org/10.1016/j.solener.2017.11.047

    Article  Google Scholar 

  15. Nayak, M., Singh, K., Mudgal, S., Mandal, S., Singhand, S., Komarala, V.K.: Carrier-selective contact based silicon solar cells processed at room temperature using industrially feasible Cz wafers. Phys. Status Solidi A (2019). https://doi.org/10.1002/pssa.201900208

    Article  Google Scholar 

  16. Bhatia, S., Khorakiwala, I.M., Nair, P.R., Antony, A.: Room temperature H2 plasma treatment for enhanced passivation of silicon/TiO2 interface. Appl. Phys. Lett. 113, 171603 (2018)

    Article  Google Scholar 

  17. Mahato, S., Puigdollers, J.: Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer. Phys. B: Phys. Condens. Matter 530, 1–9 (2018). https://doi.org/10.1016/j.physb.2017.10.068

    Article  Google Scholar 

  18. Rawat, G., Kumar, H., Kumar, Y., Kumar, C., Somvanshi, D., Jit, S.: Effective Richardson constant of sol–gel derived TiO2 Films in n-TiO2/p-Si heterojunctions. IEEE Electron Dev. Lett. (2017). https://doi.org/10.1109/led.2017.2687820

    Article  Google Scholar 

  19. Polyanskiy, M.N.: Refractive Index Database. https://refractiveindex.info. Accessed 10 Sept 2018

  20. PierreVerlinden, O., Mazy, E., Crahay, A.: The surface texturization of solar cells: a new method using V-grooves with controllable sidewall angles. Solar Energy Mater. Solar Cells 26(1–2), 71–78 (1992). https://doi.org/10.1016/0927-0248(92)90126-A

    Article  Google Scholar 

  21. Battaglia, C., Hsu, C.-M., Söderström, K., Escarré, J., Haug, F.-J., Charrière, M., Boccard, M., Despeisse, M., Alexander, D.T.L., Cantoni, M., Cui, Y., Ballif, C.: Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 2790–2797 (2012). https://doi.org/10.1021/nn300287j

    Article  Google Scholar 

  22. Roy, A.B., Dhar, A., Choudhuri, M., Das, S., Minhazhossain, S., Kundu, A.: Black Silicon Solar Cell: Analysis Optimization and Evolution Towards a Thinner and Flexible Future, vol. 27, 30th edn. IOP Publishing Ltd Nanotechnology, Bristol (2016). https://doi.org/10.1088/0957-4484/27/30/305302

    Book  Google Scholar 

  23. Chuang, S., Battaglia, C., Azcat, A., McDonnell, S., Kang, J.S., Yin, X., Tosun, M., Kapadia, R., Fang, H., Wallace, R.M., Javey, A.: MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14(3), 1337–1342 (2014). https://doi.org/10.1021/nl4043505

    Article  Google Scholar 

  24. Mehmood, H., Nasser, H., Tauqeer, T., Hussain, S., Ozkol, E., Turan, R.: Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact. Int. J. Energy Res. 42, 1563–1579 (2018). https://doi.org/10.1002/er.3947

    Article  Google Scholar 

  25. Gao, M., Chen, D., Han, B., Song, W., Zhou, M., Song, X., Fei, X., Zhao, L., Li, Y., Ma, Z.: Bifunctional hybrid a-SiOx(Mo) layer for hole-selective and interface passivation of highly efficient MoOx/a-SiOx(Mo)/n-Si heterojunction photovoltaic device. ACS Appl. Mater. Interfaces. 10, 27454–27464 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, A., Ahmad, G., Pradhan, D. et al. Performance analysis of c-Si heterojunction solar cell with passivated transition metal oxides carrier-selective contacts. J Comput Electron 19, 875–883 (2020). https://doi.org/10.1007/s10825-020-01483-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01483-9

Keywords

Navigation