Skip to main content
Log in

Consumer Segmentation Based on Use Patterns

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Recent technological advances have enabled the easy collection of consumer behavior data in real time. Typically, these data contain the time at which a consumer engages in a particular activity such as entering a store, buying a product, or making a call. The occurrence time of certain events must be analyzed as circular random variables, with 24:00 corresponding to 0:00. To effectively implement a marketing strategy (pricing, promotion, or product design), consumers should be segmented into homogeneous groups. This paper proposes a methodology based on circular statistical models from which we construct a clustering algorithm based on the use patterns of consumers. In particular, we model temporal patterns as circular distributions based on nonnegative trigonometric sums (NNTSs). Consumers are clustered into homogeneous groups based on their vectors of parameter estimates by using a spherical k-means clustering algorithm. For this purpose, we define the parameter space of NNTS models as a hypersphere. The methodology is applied to three real datasets comprising the times at which individuals send short-service messages and start voice calls and the check-in times of the users of a mobile application Foursquare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S. (2005). Clustering on the unit hypersphere using von mises-fisher distributions. Journal of Machine Learning Research, 6, 1345–82.

    MathSciNet  MATH  Google Scholar 

  • Batagelj, V. (1988). Generalized ward and related clustering problems. In Batagelj, V. (Ed.) Classification and related methods of data analysis. North-Holland, Amsterdam (pp. 67–74).

  • Eagle, N., Pentland, A., Lazer, D. (2009). Inferring social network structure using mobile phone data. Proceedings of the National Academy of Sciences (PNAS), 106-36, 15274–78.

    Article  Google Scholar 

  • Fernández-Durán, J.J. (2004). Circular distributions based on nonnegative trigonometric sums. Biometrics, 60, 499–503.

    Article  MathSciNet  Google Scholar 

  • Fernández-Durán, J.J., & Gregorio-Domínguez, M.M. (2010). Maximum likelihood estimation of nonnegative trigonometric sums models using a newton-like algorithm on manifolds. Electronic Journal of Statistics, 4, 1402–10.

    Article  MathSciNet  Google Scholar 

  • Fernández-Durán, J.J., & Gregorio-Domínguez, M.M. (2012). CircNNTSR: an R package for the statistical analysis of circular data using nonnegative trigonometric sums (NNTS) models. R package version, 2, 0. http://CRAN.R-project.org/package=CircNNTSR.

    Google Scholar 

  • Fernández-Durán, J.J., & Gregorio-Domínguez, M.M. (2016). CircNNTSR: an R package for the statistical analysis of circular, multivariate circular, and spherical data using nonnegative trigonometric sums. Journal of Statistical Software, 70–6.

  • Fisher, N.I. (1993). Statistical analysis of circular data. New York: Cambridge University Press.

    Book  Google Scholar 

  • Hornik, K. (2005). A CLUE for CLUster Ensembles. Journal of Statistical Software, 14-12, 1–25.

    Google Scholar 

  • Hornik, J., & Miniero, G. (2009). Synchrony effects on customers’ responses and behaviors. International Journal of Research in Marketing, 26, 34–40.

    Article  Google Scholar 

  • Hornik, K., Feinerer, I., Kober, M., Buchta, C. (2012). Spherical k-means clustering. Journal of Statistical Software, 50–10.

  • Hubert, L.J., & Levin, J.R. (1976). A general statistical framework for assessing categorical clustering in free recall. Psychological Bulletin, 83-6, 1072–1080.

    Article  Google Scholar 

  • Jammalamadaka, S.R., & SenGupta, A. (2001). Topics in circular statistics. River Edge: World Scientific Publishing, Co.

    Book  Google Scholar 

  • Liao, T.W. (2005). Clustering of time series data : a survey. Pattern Recognition, 38-11, 1857–1874.

    Article  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281–297.

    MathSciNet  MATH  Google Scholar 

  • Mardia, K.V., & Jupp, P.E. (2000). Directional statistics. New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Milligan, G.W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45-3, 325–342.

    Article  Google Scholar 

  • Montero, P., & Vilar, J.A. (2014). TSClust: an R package for time series clustering. Journal of Statistical Software, 62–1.

  • R Core Team. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

    Article  Google Scholar 

  • Steinley, D., & Brusco, M.J. (2007). Initializing K-means batch clustering: a critical evaluation of several techniques. Journal of Classification, 24, 99–121.

    Article  MathSciNet  Google Scholar 

  • Studer, M., Ritschard, G., Gabadinho, A., Müller, N.S. (2011). Discrepancy analysis of state sequences. Sociological Methods and Research, 40-3, 471–510.

    Article  MathSciNet  Google Scholar 

  • Studer, M. (2013). Weightedcluster library manual: a practical guide to creating typologies of trajectories in the social sciences with R. LIVES Working Papers, 24. https://doi.org/10.12682/lives.2296-1658.2013.24.

  • Upton, G.J.G., & Fingleton, B. (1989). Spatial data analysis by example vol. 2 (categorical and directional data). New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Wedel, M., & Kamakura, W.A. (2000). Market segmentation conceptual and methodological foundations, 2nd edn. Norwell: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Yang, D., Zhang, D., Chen, L., Qu, B. (2015). NationTelescope: monitoring and visualizing large-scale collective behavior in LBSNs. Journal of Network and Computer Applications, 55, 170–180.

    Article  Google Scholar 

  • Yang, D., Zhang, D., Qu, B. (2016). Participatory cultural mapping based on collective behavior data in Location-Based social networks. ACM Trans. on Intelligent Systems and Technology (TIST), 7, 1–23.

    Article  Google Scholar 

  • Yu, Y., & Lambert, D. (1999). Fitting trees to functional data with an application to time-of-day patterns. Journal of Computational and Graphical Statistics, 8(4), 749–762.

    Google Scholar 

  • Zhong, S. (2005). Efficient online spherical k-means clustering. In Proceedings IEEE, International Joint Conference in Neural Networks (IJCNN 2005), Montreal, Canada, July 31 - August 4, 2005, pp. 3180–85.

Download references

Acknowledgments

The authors wish to thank the Asociación Mexicana de Cultura A.C. for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Fernández-Durán.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Durán, J.J., Gregorio-Domínguez, M.M. Consumer Segmentation Based on Use Patterns. J Classif 38, 72–88 (2021). https://doi.org/10.1007/s00357-019-09360-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-019-09360-2

Keywords

Navigation