Skip to main content
Log in

Spherical Classification of Data, a New Rule-Based Learning Method

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

This paper presents a new rule-based classification method that partitions data under analysis into spherical patterns. The forte of the method is twofold. One, it exploits the efficiency of distance metric-based clustering to fast collect similar data into spherical patterns. The other, spherical patterns are each a trait shared among one type of data only, hence are built for classification of new data. Numerical studies with public machine learning datasets from Lichman (2013), in comparison with well-established classification methods from Boros et al. (IEEE Transactions on Knowledge and Data Engineering, 12, 292–306, 2000) and Waikato Environment for Knowledge Analysis (http://www.cs.waikato.ac.nz/ml/weka/), demonstrate the aforementioned utilities of the new method well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aha, D., Kibler, D., Albert, M. (1991). Instance-based learning. Machine Learning, 6(1), 37–66.

    Google Scholar 

  • Alexe, G., & Hammer, P.L. (2006a). Spanned patterns for the logical analysis of data. Discrete Mathematics, 154(7), 1039–1049.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexe, S., & Hammer, P.L. (2006b). Accelerated algorithm for pattern detection in logical analysis of data. Discrete Mathematics, 154(7), 1050–1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexe, G., Alexe, S., Bonates, T., Kogan, A. (2007). Logical analysis of data – the vision of Peter L. Hammer. Annals of Mathematics and Artificial Intelligence, 49, 265–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Balcan, M. -F., Blum, A., Vempala, S. (2008). A discriminative framework for clustering via similarity functions. In Proceedings of the Fortieth ACM Symposium on Theory of Computing (pp. 671– 680).

  • Bazaraa, M., Sherali, H., Shetty, C. (2006). Nonlinear programming: theory and algorithms. New York: Wiley.

    Book  MATH  Google Scholar 

  • Beasley, J., & Chu, P. (1996). A genetic algorithm for the set covering problem. European Journal of Operation Research, 94, 392–404.

    Article  MATH  Google Scholar 

  • Bennett, K., & Mangasarian, O. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23–34.

    Article  Google Scholar 

  • Bennett, K., & Mangasarian, O. (1994). Bilinear separation of two sets in n −space. Computational Optimization and Applications, 2, 207–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonates, T., Hammer, P. L., Kogan, A. (2008). Maximum patterns in datasets. Discrete Applied Mathematics, 156(6), 846–861.

    Article  MathSciNet  MATH  Google Scholar 

  • Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I. (2000). An implementation of logical analysis of data. IEEE Transactions on Knowledge and Data Engineering, 12, 292–306.

    Article  Google Scholar 

  • Bradley, P., & Mangasarian, O. (2000). Massive data discrimination via linear support vector machines. Optimization Methods and Software, 13(1), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  MATH  Google Scholar 

  • Chvatal, V. (1979). A greedy heuristic for the set covering problem. Mathematics of Operations Research, 4, 233–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth International Conference on Machine Learning (pp. 115–123).

  • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297.

    MATH  Google Scholar 

  • Eick, C. F., Zeidat, N., Zhao, Z. (2004). Supervised clustering – algorithms and benefits. In 16Th IEEE international conference on tools with artificial intelligence (pp. 774–776).

  • Falk, J., & Lopez-Cardona, E. (1997). The surgical separation of sets. Journal of Global Optimization, 11, 433–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 144–151).

  • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Thirteenth International Conference on Machine Learning (pp. 148–156).

  • Fung, G., & Mangasarian, O. (2003). Finite Newton method for Lagrangian support vector machine classification. Neurocomputing, 55, 39–55.

    Article  Google Scholar 

  • Guo, C., & Ryoo, H.S. (2012). Compact MILP models for optimal and Pareto-optimal LAD patterns. Discrete Applied Mathematics, 160, 2339–2348.

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, C., & Ryoo, H.S. (2018). On Pareto-optimal Boolean logical patterns for numerical data. Submitted for publication.

  • Gurobi Optimization Inc. (2017). Gurobi optimizer reference manual. http://www.gurobi.com.

  • Hammer, P.L., Kogan, A., Simeone, B., Szedmak, S. (2004). Pareto-optimal patterns in logical analysis of data. Discrete Applied Mathematics, 144, 79–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Haykin, S. (1999). Neural networks: a comprehensive foundation. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  • Hoffman, K., & Padberg, M. (1993). Solving airline crew scheduling problems by branch-and-cut. Management Science, 39(6), 657–682.

    Article  MATH  Google Scholar 

  • Jain, A., Murty, M., Flynn, P. (1999). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  • Jain, A. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31, 651–666.

    Article  Google Scholar 

  • John, G., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338–345).

  • Kim, K., & Ryoo, H.S. (2007a). Data separation via a finite number of discriminant functions: a global optimization approach. Applied Mathematics and Computation, 190 (1), 476–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, K., & Ryoo, H.S.S. (2007b). Nonlinear separation of data via mixed 0-1 integer and linear programming. Applied Mathematics and Computation, 193(1), 183–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, K., & Ryoo, H.S. (2008). A LAD-based method for selecting short oligo probes for genotyping applications. OR Spectrum, 30(2), 249–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohavi, R. (1995). The power of decision tables. In Proceedings of the Eighth European Conference on Machine Learning (pp. 179–189).

  • Kolesar, P., & Walker, W. (1974). An algorithm for the dynamic relocation of fire companies. Operations Research, 22, 249–274.

    Article  Google Scholar 

  • Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml.

  • Lorena, L., & Lopes, F. (1994). A surrogate heuristic for set covering problems. European Journal of Operational Research, 79, 138–150.

    Article  MATH  Google Scholar 

  • Ma, Z., & Ryoo, H.S. (2012). General set covering for feature selection in data mining. Management Science and Financial Engineering, 18(2), 13–17.

    Article  Google Scholar 

  • Mangasarian, O. (1965). Linear and nonlinear separation of patterns by linear programming. Operations Research, 13(3), 444–452.

    Article  MathSciNet  MATH  Google Scholar 

  • Mangasarian, O. (1968). Multisurface method of pattern separation. IEEE Transactions on Information Theory, 14(6), 801–807.

    Article  MATH  Google Scholar 

  • Mangasarian, O. (1993). Mathematical programming in neural network. ORSA Journal on Computing, 5(4), 349–360.

    Article  MATH  Google Scholar 

  • Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization, (pp. 185–208). Cambridge: MIT Press.

    Google Scholar 

  • Quinlan, R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann Publishers.

    Google Scholar 

  • Ryoo, H.S., & Jang, I. (2009). MILP approach to pattern generation in logical analysis of data. Discrete Applied Mathematics, 157, 749–761.

    Article  MathSciNet  MATH  Google Scholar 

  • Ullman, J. (1973). Pattern recognition techniques. London: Crane.

    Google Scholar 

  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Vapnik, V. (2000). The nature of statistical learning theory, 2nd edn. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Wedelin, D. (1995). An algorithm for large scale 0-1 inter programming with application to airline crew scheduling. Annals of Operations Research, 57, 283–301.

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, K., & Ryoo, H.S. (2017a). 0-1 multilinear programming as a unifying theory for LAD pattern generation. Discrete Applied Mathematics, 218, 21–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, K., & Ryoo, H.S. (2017b). Strong valid inequalities for Boolean logical pattern generation. Journal of Global Optimization, 69(1), 183–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, K., & Ryoo, H.S. (2020). Cliques for Multi-Term linearization of 0-1 multilinear program for Boolean logical pattern generation. In Optimization of Complex Systems: Theory, Models, Algorithms and Applications, Advances in Intelligent Systems and Computing, 991, 376–386.

    Google Scholar 

Download references

Funding

This work was supported by research grant awarded to H.S. Ryoo by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-03 and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number: 2017R1D1A1A02018729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Seo Ryoo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Ryoo, H.S. Spherical Classification of Data, a New Rule-Based Learning Method. J Classif 38, 44–71 (2021). https://doi.org/10.1007/s00357-019-09355-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-019-09355-z

Keywords

Navigation