Skip to main content

Advertisement

Log in

Are We Underestimating Food Insecurity? Partial Identification with a Bayesian 4-Parameter IRT Model

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

This paper addresses measurement error in food security in the USA. In particular, it uses a Bayesian 4-parameter IRT model to look at the likelihood of over- or under-reporting of the conditions that comprise the food security module (FSM), the data collection administered in many US surveys to assess and monitor food insecurity. While this model’s parameters are only partially identified, we learn about the likely values of these parameters by using a Bayesian framework. My results suggest significant under-reporting of more severe food security items, particularly those in the child module. I find no evidence of over-reporting of food hardships. I show that, under conservative assumptions, this model predicts food insecurity prevalence between 1 and 3 percentage points higher than current estimates, or roughly 4 to 15 percent of prevalence, for the years 2007–2015. Results suggest much larger increases—on the order of 50 percent of prevalence—for very low food security among households that were screened into the food security module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitkin, M. (2016). Expectation maximization algorithm and extensions. In van der Linden, W.J. (Ed.) Handbook of Item Response Theory, (Vol. 2 pp. 217–236): CRC Press.

  • Albert, J.H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational and Behavioral Statistics, 17(3), 251–69.

    Article  Google Scholar 

  • Albert, J.H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.

    Article  MathSciNet  Google Scholar 

  • Beguin, A.A., & Glas, C.A.W. (2001). MCMC Estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66(4), 541–562.

    Article  MathSciNet  Google Scholar 

  • Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika, 56(4), 443–459.

    Article  MathSciNet  Google Scholar 

  • Coleman-Jensen, A., Rabbit, M.P., Gregory, C.A. (2017). Examining an “Experimental” food security status classification method for households with children technical bulletin 1945, US Dept. of Agriculture, Economic Research Service.

  • Culpepper, S.A. (2016). Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika, 81(4), 1142–1163.

    Article  MathSciNet  Google Scholar 

  • Culpepper, S.A. (2017). The prevalence and implications of slipping on low-stakes, large-scale assessments. Journal of Educational and Behavioral Statistics, 42(6), 706–725.

    Article  Google Scholar 

  • DePolt, R.A., Moffitt, R.A., Ribar, D.C. (2009). Food stamps, temporary assistance to needy families and food hardships in three American cities. Pacific Economic Review, 14(4), 445–473.

    Article  Google Scholar 

  • Englehard, G.J., Rabbitt, M.P., Englehard, E.M. (2017). Using household fit indices to examine the psychometric quality of the food insecurity measures. Educational and Psychological Measurement, 78(6), 1–19.

    Google Scholar 

  • Fox, J.-P. (2010). Bayesian item response modeling: theory and applications. Berlin: Springer.

    Book  Google Scholar 

  • Froelich, A.G., & Jensen, H.H. (2002). Dimensionality of the USDA food security index. Technical report, Iowa State University.

  • Gelfand, A.E., & Sahu, S.K. (1999). Identifiability, improper priors, and Gibbs sampling for generalized linear models. Journal of the American Statistical Association, 94(445), 247–53.

    Article  MathSciNet  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B. (2014). Bayesian data analysis, 3rd edn. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Gregory, C.A., Rabbit, M., Ribar, D.C. (2015). The supplemental nutrition assistance program and food insecurity. In Ziliak, J.P., Bartfield, J., Smeeding, T., Gunderson, C. (Eds.) The New Safety Net: Why SNAP Matters: Stanford University Press.

  • Gundersen, C., & Kreider, B. (2008). Food stamps and food insecurity: what can be learned in the presence of nonclassical measurement error?. Journal of Human Resources, 43(2), 352–382.

    Article  Google Scholar 

  • Gundersen, C., & Kreider, B. (2009). Bounding the effects of food insecurity on children’s health outcomes. Journal of Health Economics, 28(5), 971–983.

    Article  Google Scholar 

  • Gundersen, C., Kreider, B., Pepper, J. (2011a). The economics of food insecurity in the United States. Applied Economic Perspectives and Policy, 33(3), 281–303.

  • Gundersen, C., & Ribar, D. (2011b). Food insecurity and insufficiency at low levels of food expenditures. Review of Income and Wealth, 57(4), 704–726.

    Article  Google Scholar 

  • Gundersen, C., & Ziliak, J.P. (2015). Food insecurity and health outcomes. Health Affairs, 34(11), 1830–1839.

    Article  Google Scholar 

  • Gustafson, P. (2015). Bayesian inference for partiallly identified models: exploring the limits of limited data. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Hahn, P.R., Murray, J.S., Manolopoulou, I. (2016). A Bayesian partial identification approach to inferring the prevalence of accounting misconduct. Journal of the American Statistical Association, 111(513), 14–26.

    Article  MathSciNet  Google Scholar 

  • Loken, E., & Rulison, K.L. (2010). Estimation of a four-parameter item response theory model. Britiish Journal of Mathematical and Statistical Psychology, 63, 509–525.

    Article  MathSciNet  Google Scholar 

  • Long, Q., Little, R.J.A., Lin, X. (2010). Estimating causal effects in trials involving multitreatment arms subject to non-compliance: a Bayesian framework. Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(3), 513–531.

    MathSciNet  Google Scholar 

  • Maris, G., & Bechger, T. (2009). On interpreting the model parameters for the three parameter logistic model. Measurement: Interdisciplinary Research &, Perspective, 7, 75–88.

    Google Scholar 

  • Neath, A.A., & Samaniego, F.J. (1997). On the efficacy of Bayesian inference for nonidentifiable models. The American Statistician, 51(3), 225–232.

    MathSciNet  Google Scholar 

  • Nord, M., & Bickel, G. (2001). Estimating the prevalence of children’s hunger from the current population survey food security supplement. In Andrews, M.S., & Prell, M.A. (Eds.) Second Food Security Measurement and Research Conference : Papers, (Vol. II pp. 31–50): US. Department of Agriculture.

  • Nord, M. (2012a). Assessing potential technical enhancements to the U.S household food security measures. Technical report, Economic Research Service-USDA.

  • Nord, M., & Hanson, K. (2012b). Adult caregiver reports of adolescents’ food security do not agree well with adolescents’ own reports. Journal of Hunger and Environmental Nutrition, 7(4), 363–80.

    Article  Google Scholar 

  • Nord, M., & Coleman-Jensen, A. (2014). Improving food security classification of households with children. Journal of Hunger and Environmental Nutrition, 9(3), 318–333.

    Article  Google Scholar 

  • Opsomer, J.D., Jensen, H.H., Nusser, S.M., Drignei, D., Amemiya, Y. (2002). Statistical considerations for the USDA food insecurity index. CARD Working Papers 324, Iowa State University.

  • Ratcliffe, C., McKernan, S., Zhang, S. (2011). How much does the supplemental nutrition assistance program reduce food insecurity?. American Journal of Agricultural Economics, 93(4), 1082–1098.

    Article  Google Scholar 

  • Reise, S.P., & Waller, N.G. (2003). How many IRT parameters does it take to model psychopathology items?. Psychological Methods, 8(2), 164–84.

    Article  Google Scholar 

  • Sahu, S.K. (2002). Bayesian estimation and model choice in item response models. Journal of Statistical Computation and Simulation J. Statist. Comput. Simul, 72(3), 217–232.

    Article  MathSciNet  Google Scholar 

  • San Martin, E., Gonzalez, J., Tuerlinckx, F. (2009). Identified parameters, parameters of interest, and their relationships. Measurement: Interdisciplinary Research and Perspectives, 7(2), 97–105.

    Google Scholar 

  • San Martín, E., & Rolin, J.-M. (2012). Identification of parametric Rasch-type models. Journal of Statistical Planning and Inference, 143, 116–130.

    Article  MathSciNet  Google Scholar 

  • San Martín, E., Rolin, J.M., Castro, L.M. (2013). Identification of the 1PL model with guessing parameter: parametric and semi-parametric results. Psychometrika.

  • San Martin, E. (2016). Identification of item response theory models. In vander Linden, W. (Ed.) Handbook of Item Response Theory, (Vol. 2 pp. 127–150). Boca Raton: CRC.

  • Shaefer, H.L., & Gutierrez, I. (2013). The supplemental nutrition assistance program and material hardships among low-income households with children. Social Service Review, 87(4), 753–779.

    Article  Google Scholar 

  • Sheng, Y. (2008). Markov chain Monte Carlo estimation of normal ogive IRT models in MATLAB. JSS Journal of Statistical Software, 25(8), 1–15.

    Google Scholar 

  • Sinharay, S. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement, 30(4), 298–321.

    Article  MathSciNet  Google Scholar 

  • Tavares, H.R., Francisco De Andrade, D., De Bragança Pereira, C. A. (2004). Detection of determinant genes and diagnostic via item response theory. Genetics and Molecular Biology, 4(2–4), 679–685.

    Article  Google Scholar 

  • Waller, N., & Reise, S. (2010). Measuring psychopathology with nonstandard item response theory models: fitting the four parameter model to the Minnesota Multiphasic Personality Inventory. In Embretson, S. (Ed.) Measuring Psychological Constructs: Advances in Model-Based Approaches (pp. 147–173). Washington: American Psychological Association.

  • Yen, Y.-C., Ho, R.-G., Laio, W.-W., Chen, L.-J., Kuo, C.-C. (2012). An empirical evaluation of the slip correction in the four parameter logistic models with computerized adaptive testing. Applied Psychological Measurement, 36(2), 75–87.

    Article  Google Scholar 

Download references

Acknowledgments

The findings and conclusions in this publication are those of the author and should not be construed to represent any official USDA or US Government determination or policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. Gregory.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Items in Food Security Module

The items in the FSM are listed below, along with the variable names used in tables to denote them.

figure a
figure b

Appendix B: Estimation Details

1.1 B.I Statement of the Problem

As mentioned in the text, the conditional distribution of Yij given Wij shows the indirect relationship between \(\theta _{i}\) and Yij:

$$ P(Y_{ij}|W_{ij}) = \left\{\begin{array}{ll} \delta_{j}^{Y_{ij}}(1-\delta_{j})^{1-Y_{ij}} \text{if} W_{ij}=0 \\ \tau_{j}^{1-Y_{ij}}(1-\tau_{j})^{Y_{ij}} \text{if} W_{ij}=1 \end{array} \right. $$

In the 4PL, Wij assigns some probability to a misreport of food hardship, captured in the parameters δ and τ. The probability of an over-report of food hardship is \(P(Y_{ij}=1|W_{ij}=0) = \delta _{j}\), while the probability of an under report is \(P(Y_{ij}=0|W_{ij}=1) = \tau _{j}\).

The full model implied by this discussion is as follows:

$$ \begin{array}{@{}rcl@{}} Y_{ij}|W_{ij},\delta_{j}, \tau_{j} &\sim & \left\{\begin{array}{ll} \text{Bernoulli}(\delta_{j}), W_{ij}=0 \\ \text{Bernoulli}(1-\tau_{j}), W_{ij} = 1 \end{array} \right. \end{array} $$
(11)
$$ \begin{array}{@{}rcl@{}} W_{ij} &=& \mathbf{I}(Z_{ij}>0) \end{array} $$
(12)
$$ \begin{array}{@{}rcl@{}} Z_{ij} &\sim & N(\nu_{ij},1), \nu_{ij} = (\theta_{i}-\beta_{j}) \end{array} $$
(13)
$$ \begin{array}{@{}rcl@{}} \theta_{i} & \sim & N(\mu_{\theta},\sigma_{\theta}^{2}) \end{array} $$
(14)
$$ \begin{array}{@{}rcl@{}} (\beta_{j}) & \sim & N(\mathbf{\mu}_{\beta},\mathbf{\Sigma}_{\beta}) \end{array} $$
(15)
$$ \begin{array}{@{}rcl@{}} \pi(\delta_{j}, \tau_{j}) & \propto & \delta_{j}^{a_{\delta}-1}(1-\delta_{j})^{b_{\delta}-1} \tau_{j}^{a_{\tau}-1}(1-\tau_{j})^{b_{\tau}-1}\mathbf{I}((\delta_{j},\tau_{j}) \in {\Omega}) , \end{array} $$
(16)

where I is an indicator function and Ω is the support of τj and δj. The only difference between this model and that in Culpepper (2016) is that we constrain αj = 1∀j. (See Eqs. 25 and 27, below.) As mentioned above, the variable Wij is a discrete latent variable that relies on the value of the continuous latent variable Zij, which is partially identified by the most severe question affirmed and the number of questions affirmed. Equations 12 and 13 describe the relationship between Wij and νij as a probit model. We employ the normalizing assumption that 𝜃i has a standard normal distribution.

The posterior distribution that we are interested in is as follows:

$$ p(\mathbf{Z},\mathbf{W},\mathbf{\theta},\mathbf{\gamma},\mathbf{\delta},\mathbf{\tau}) \propto p(\mathbf{Y}|\mathbf{W},\mathbf{\delta},\mathbf{\tau})p(\mathbf{Z},\mathbf{W}|\mathbf{\theta},\mathbf{\beta})p(\theta)p(\beta)p(\delta,\tau) $$
(17)

In a way similar to Y, we write W = (W1...WJ) and \(\mathbf {W_{j}}^{\prime } = (W_{1j} ... W_{Nj}\). The conditional probability of observing Y given W is

$$ \begin{array}{@{}rcl@{}} p(\mathbf{Y}|\mathbf{W},\delta,\tau) & = & \prod\limits_{i=1}^N \prod\limits_{j=1}^{J}\left[(1-\tau_{j})^{W_{ij}} \delta_{j}^{(1-W_{ij})}\right]^{Y_{ij}}\left[\tau_{j}^{W_{ij}} (1-\delta_{j})^{(1-W_{ij})} \right]^{(1-Y_{ij})} \end{array} $$
(18)
$$ \begin{array}{@{}rcl@{}} & = & \prod\limits_{j=1}^{J}\tau_{j}^{\hat{n}_{10j}} (1-\tau_{j})^{\hat{n}_{11j}} \delta_{j}^{\hat{n}_{01j}} (1-\delta_{j})^{\hat{n}_{00j}}, \end{array} $$
(19)

where \(\hat {n}_{00j}, \hat {n}_{01j}, \hat {n}_{10j}, \text {and} \hat {n}_{11j},\) are counts produced by the cross tabulation of Wij and Yij. For example, \(\hat {n}_{00j}\) is the count of respondents for whom the latent variable W and the observed response Y are both zero – true negatives.

The joint prior for the latent variables Z and W conditioned on the 2PM parameters γ can be thought of as the density for Z truncated according to the value of W:

$$ p(\mathbf{Z,W}|\theta,\gamma) = \prod\limits_{i=1}^{N}\prod\limits_{j=1}^{J}\phi(Z_{ij};\nu_{ij},1)[\mathbf{I}(Z_{ij}<0)\mathbf{I}(W_{ij}=0)+\mathbf{I}(Z_{ij}\geq 0)\mathbf{I}(W_{ij}=1)] $$
(20)

Once Z is integrated out, the prior distribution for Z given W is

$$ p(\mathbf{Z}|\mathbf{W},\mathbf{\theta},\mathbf{\beta}) = \frac{p(\mathbf{Z,W}|\theta,\beta)}{p(\mathbf{W}|\mathbf{\theta,\beta})}= \prod\limits_{i=1}^{N}\prod\limits_{j=1}^{J}\phi(Z_{ij};\nu_{ij},1)\left[\frac{\mathbf{I}(Z_{ij}<0)}{1-{\Phi}(\nu_{ij})}\right]^{(1-W_{ij})} \left[\frac{\mathbf{I}(Z_{ij} \geq 0)}{\Phi(\nu_{ij})}\right]^{W_{ij}}, $$
(21)

which is the full conditional prior of Z, given W.

1.2 B.II Sampling Distributions

The full conditional distributions of the parameters are as follows.

$$ \begin{array}{@{}rcl@{}} W_{ij}|Y_{ij}, \nu_{ij}, \delta_{j}, \tau_{j} &\sim & \left\{\begin{array}{ll} \text{Bernoulli}\left( \frac{\tau_{j}{\Phi}(\nu_{ij})}{1-\delta_{j}-(1-\tau_{j}-\delta_{j}){\Phi}(\nu{ij})}\right), Y_{ij}=0 \\ \text{Bernoulli}\left( \frac{(1-\tau_{j}){\Phi}(\nu_{ij})}{\delta_{j}+(1-\tau_{j}-\delta_{j}){\Phi}(\nu{ij})}\right),Y_{ij}=1 \end{array} \right. \end{array} $$
(22)
$$ \begin{array}{@{}rcl@{}} Z_{ij}|W_{ij}, \nu_{ij} &\sim & \left\{\begin{array}{ll} N(\nu_{ij},1)\mathbf{I}(Z_{ij}\leq 0), W_{ij} = 0 \\ N(\nu_{ij},1)\mathbf{I}(Z_{ij} > 0), W_{ij} = 1 \end{array} \right. \end{array} $$
(23)
$$ \begin{array}{@{}rcl@{}} \theta_{i}|\mathbf{Z}_{i},\boldsymbol{\varepsilon} &\sim& N \left( \frac{(\mathbf{Z}_{i}+\beta)+\mu_{\theta}\sigma_{\theta}^{-2}}{\sigma_{\theta}^{-2}},\frac{1}{\sigma_{\theta}^{-2}} \right) \end{array} $$
(24)
$$ \begin{array}{@{}rcl@{}} (\beta_{j})|\mathbf{Z}^{\prime}_{j} & \sim & N(\boldsymbol{\mu}^{*}_{\beta},\boldsymbol{\Sigma}_{\beta}^{*}) \end{array} $$
(25)
$$ \begin{array}{@{}rcl@{}} \mathbf{Z}_{i} & = & (Z_{1j}...Z_{Nj}) \end{array} $$
(26)
$$ \begin{array}{@{}rcl@{}} \mathbf{X}_{\theta} & = & (\mathbf{-1_{N}}) \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{\Sigma}_{\varepsilon}^{*} &=& \left( \mathbf{X}_{\theta}^{\prime}\mathbf{X}_{\theta} + \boldsymbol{\Sigma}_{\varepsilon}^{-1}\right)^{-1} \end{array} $$
(28)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{\mu}_{\varepsilon}^{*}&=& \boldsymbol{\Sigma}_{\varepsilon}^{*}\left( \mathbf{X}_{\theta}^{\prime}\mathbf{Z}_{j} + \boldsymbol{\Sigma}_{\varepsilon}^{-1}\boldsymbol{\mu}_{\varepsilon} \right) \end{array} $$
(29)
$$ \begin{array}{@{}rcl@{}} p(\delta_{j}|\mathbf{Y}_{j}, \mathbf{W}_{j}) & \propto & \delta_{j}^{\hat{a}_{\delta}-1} (1-\delta_{j}^{\hat{b}_{\delta}-1}) \end{array} $$
(30)
$$ \begin{array}{@{}rcl@{}} p(\tau_{j}|\mathbf{Y}_{j}, \mathbf{W}_{j}) & \propto & \tau_{j}^{\hat{a}_{\tau}-1} (1-\tau_{j}^{\hat{b}_{\tau}-1}) \end{array} $$
(31)
$$ \begin{array}{@{}rcl@{}} \hat{a}_{\delta} & = & \hat{n}_{01j}+ a_{\delta}, \hat{b}_{\delta} =\hat{n}_{00j}+b_{\delta} \end{array} $$
(32)
$$ \begin{array}{@{}rcl@{}} \hat{a}_{\tau} & = & \hat{n}_{10j}+ a_{\tau}, \hat{b}_{\tau} =\hat{n}_{11j}+b_{\tau} \end{array} $$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregory, C.A. Are We Underestimating Food Insecurity? Partial Identification with a Bayesian 4-Parameter IRT Model. J Classif 37, 632–655 (2020). https://doi.org/10.1007/s00357-019-09344-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-019-09344-2

Keywords

Navigation