Skip to main content
Log in

Danaus butterflies of the Americas do not perform leaf-scratching

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Danaine butterflies sequester pyrrolizidine alkaloids (PAs) from several plant sources. The underlying mechanisms that mediate this interaction have not been explored. It is also underappreciated whether species that differ in PA demands forage differently. Decision-making in the southern monarch butterfly Danaus erippus (low PA-demand) was compared with the queen butterfly D. gilippus (high PA-demand) in relation to withered and freshly damaged leaves of Crotalaria spectabilis (monocrotaline-rich plant). The ultrastructure of the proboscis and mesothoracic legs of D. erippus, D. gilippus and D. plexippus was also analysed. Attraction of D. erippus and D. gilippus to withered or freshly damaged leaves of C. spectabilis was negligible. The two Danaus species did not scratch leaves and did not differ in feeding time on this PA plant. Butterflies did not visit vegetative PA sources in the field. The proboscis and mesothoracic legs of all Danaus species studied did not present hooks and/or spines for scratching leaves. Basiconic sensilla were found on the surface of the proboscis of all butterfly species analysed. In contrast to the current knowledge on Danaus, these results revealed that common species of the Americas are not attracted to vegetative PA sources. It is suggested that Danaus species may have diversified independently with respect to PA assimilation capacities and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackery PR, Vane-Wright RI (1984) Milkweed butterflies—their cladistics and biology. Cornell University Press, New York

    Google Scholar 

  • Becalloni GW, Viloria AL, Hall SK, Robinson GS (2008) Catalogue of the hostplants of the Neotropical butterflies. Monografias Tercer Milenio, Zaragoza

    Google Scholar 

  • Beltrán M, Jiggins CD, Brower AVZ, Bermingham E, Mallet J (2007) Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biol J Linn Soc 92:221–239

    Google Scholar 

  • Bhuyan M, Kataki D, Deka M, Bhattacharyya PR (2005) Nectar host plant selection and floral probing by the Indian butterfly Danaus genutia (Nymphalidae). J Res Lep 38:79–84

    Google Scholar 

  • Boppré M (1981) Adult Lepidoptera “feeding” at withered Heliotropium plants (Boraginaceae) in East Africa. Ecol Entomol 6:449–452

    Google Scholar 

  • Boppré M (1983) Leaf-scratching: a specialized behaviour of danaine butterflies (Lepidoptera) for gathering secondary plant substances. Oecologia 59:414–416

    PubMed  Google Scholar 

  • Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Google Scholar 

  • Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids—exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185

    PubMed  Google Scholar 

  • Boppré M (2011) The ecological context of pyrrolizidine alkaloids in food, feed and forage: an overview. Food Addit Contam A 28:260–281

    Google Scholar 

  • Boppré M, Petty RL, Schneider D, Meinwald J (1978) Behaviorally mediated contacts between scent organs: another prerequisite for pheromone production in Danaus chrysippus males (Lepidoptera). J Comp Physiol A 126:97–103

    Google Scholar 

  • Brower LP, Brower JVZ, Corvino JM (1967) Plant poisons in a terrestrial food chain. Proc Natl Acad Sci USA 57:893–898

    CAS  PubMed  Google Scholar 

  • Brower LP, Glazier SC (1975) Localization of heart poisons in monarch butterfly. Science 188:19–25

    CAS  PubMed  Google Scholar 

  • Brower LP, McEvoy PB, Williamson KL, Flannery MA (1972) Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America. Science 177:426–429

    CAS  PubMed  Google Scholar 

  • Brower LP, Seiber JN, Nelson CJ, Lynch SP, Tuskes PM (1982) Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus, reared on the milkweed, Asclepias eriocarpa in California. J Chem Ecol 8:579–633

    CAS  PubMed  Google Scholar 

  • Brower AVZ, Wahlberg N, Ogawa JR, Boppré M, Vane-Wright RI (2010) Phylogenetic relationships among genera of danaine butterflies (Lepidoptera: Nymphalidae) as implied by morphology and DNA sequences. Syst Biodivers 8:75–89

    Google Scholar 

  • Brown KSJ (1984) Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae). Rev Bras Biol 44:435–460

    CAS  Google Scholar 

  • Brown KSJ (1992) Borboletas da Serra do Japi: diversidade, habitats, recursos alimentares e variação temporal. In: Morellato LPC (ed) História natural da Serra do Japi- ecologia e preservação de uma área florestal no sudeste do Brasil, 1st edn. Unicamp, Campinas, pp 142–186

    Google Scholar 

  • Culvenor CCJ, Smith LW (1957) The alkaloids of Crotalaria spectabilis Roth. Aust J Chem 10:474–479

    CAS  Google Scholar 

  • de Oliveira MV, Trigo JR, Rodrigues D (2015) Southern monarchs do not develop learned preferences for flowers with pyrrolizidine alkaloids. J Chem Ecol 41:662–669

    PubMed  Google Scholar 

  • Deinzer ML, Thomson PA, Burgett DM, Isaacson DL (1977) Pyrrolizidine alkaloids- their occurrence in honey from tansy ragwort (Senecio jacobaea L.). Science 195:497–499

    CAS  PubMed  Google Scholar 

  • Dirzo R, Domínguez CA (1995) Plant–herbivore interactions in Mesoamerican tropical dry forests. In: Bullock SH, Medina E, Mooney HA (eds) Seasonally dry tropical forests, 1st edn. Cambridge University Press, California, pp 304–325

    Google Scholar 

  • Dinesh AS, Venkatesha MG (2013) A quantified ethogram for oviposition behavior and oviposition preference in the hemipterophagous butterfly Spalgis epius (Westwood) (Lepidoptera: Lycaenidae). J Ethol 31:71–77

    Google Scholar 

  • Edgar JA (1975) Danainae (Lep.) and 1,2-dehydropyrrolizidine alkaloid-containing plant- with reference to observations made in the New Hebrides. Philos Trans R Soc B 272:467–476

    CAS  Google Scholar 

  • Edgar JA, Boppré M, Schneider D (1979) Pyrrolizidine alkaloid storage in African and Australian danaid butterflies. Experientia 35:1447–1448

    CAS  Google Scholar 

  • Edgar JA, Culvenor CCJ (1975) Pyrrolizidine alkaloids in Parsonsia species (Family Apocynaceae) which attract danaid butterflies. Specialia 31:393–504

    CAS  Google Scholar 

  • Edgar JA, Cockrum PA, Frahn JL (1976) Pyrrolizidine alkaloids in Danaus plexippus L. and Danaus chrysippus L. Specialia 32:1535–1537

    CAS  Google Scholar 

  • Ferreira PPS (2017) História de vida e comportamento de duas espécies neotropicais de Danainae (Lepidoptera: Nymphalidae) em apocináceas nativas e exóticas. Thesis, Universidade Federal do Rio de Janeiro

  • Flores AS (2004) Taxonomia, números cromossômicos e química de espécies de Crotalaria L. (Leguminosae-Papilionoideae) no Brasil. Dissertation, Universidade Estadual de Campinas

  • Flores AS, Tozzi AMGA, Trigo JR (2009) Pyrrolizidine alkaloid profiles in Crotalaria species from Brazil: chemotaxonomic significance. Biochem Syst Ecol 37:459–469

    CAS  Google Scholar 

  • Gilbert LE (1972) Pollen feeding and reproductive biology of Heliconius butterflies. Proc Natl Acad Sci USA 69:1403–1407

    CAS  PubMed  Google Scholar 

  • Gilbert LE (1991) Biodiversity of a Central American Heliconius community: pattern, process, and problems. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions, 1st edn. Wiley, New York, pp 403–427

    Google Scholar 

  • Glendinning JI, Brower LP, Montgomery CA (1990) Responses of three mouse species to deterrent chemicals in the monarch butterfly. I. Taste and toxicity tests using artificial diets laced with digitoxin or monocrotaline. Chemoecology 1:114–123

    CAS  Google Scholar 

  • Hartmann T (1995) Pyrrolizidine alkaloids between plants and insects: a new chapter of an old story. Chemoecology 5:139–146

    Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Top Curr Chem 209:207–243

    CAS  Google Scholar 

  • Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, 1st edn. Pergamon Press, Oxford, pp 155–233

    Google Scholar 

  • Hilgartner R, Raoilison M, Büttiker W, Lees DC, Krenn HW (2007) Magalasy birds as hosts for eye-frequenting moths. Biol Lett 3:117–120

    PubMed  PubMed Central  Google Scholar 

  • Hilker M, Meiners T (2002) Chemoecology of insect eggs and egg deposition. Blackwell Publishing, Oxford

    Google Scholar 

  • Johnston G, Johnston B (1980) This is Hong Kong: butterflies. Government Printer, Hong Kong

    Google Scholar 

  • Kelley RB, Seiber JN, Jones AD, Segall HJ, Brower LP (1987) Pyrrolizidine alkaloids in overwintering monarch butterflies (Danaus plexippus) from Mexico. Experientia 43:943–946

    CAS  Google Scholar 

  • Krenn HW (2010) Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Ann Rev Entomol 55:307–327

    CAS  Google Scholar 

  • Krenn HW, Zulka KP, Gatschnegg T (2001) Proboscis morphology and food preferences in nymphalid butterflies (Lepidoptera: Nymphalidae). J Zool 254:17–26

    Google Scholar 

  • Krenn HW, Eberhard MJB, Eberhard SH, Hikl AL, Huber W, Gilbert LE (2009) Mechanical damage to pollen aids nutrient acquisition in Heliconius butterflies (Nymphalidae). Arthropod-Plant Inte. https://doi.org/10.1007/s11829-009-9074-7

    Article  Google Scholar 

  • Lehner PN (1996) Handbook of ethological methods. Cambridge University Press, New York

    Google Scholar 

  • Lever RA (1936) Notes on Euploea and other Lepidoptera attracted to Tournefortia at Kolombangara, Solomon Islands. Proc R Entomol Soc A 11:95–96

    Google Scholar 

  • Lopez LM (2017) Demandas conflitantes entre defesas químicas: cardenolidas e alcaloides pirrolizidínicos em Danaus erippus e Danaus gilippus (Lepidoptera: Danainae). Thesis, Universidade Estadual de Campinas

  • Lorenzi H (2000) Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Malcolm SB, Brower LP (1989) Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45:284–295

    CAS  Google Scholar 

  • Malcolm SB, Slager BH (2015) Migration and host plant use by the southern monarch butterfly, Danaus erippus. In: Oberhauser KA, Altizer S, Nail K (eds) Monarchs in a changing world: biology and conservation of an iconic insect, 1st edn. Cornell University Press, Ithaca, pp 225–235

    Google Scholar 

  • Martin P, Bateson P (2007) Measuring behaviour—an introductory guide. Cambridge University Press, New York

    Google Scholar 

  • Martins CHZ, Cunha BP, Solferini VN, Trigo JR (2015) Concentrations and structure of pyrrolizidine alkaloids impacts the chemical-defense effectiveness of a specialist herbivore. PLoS ONE 10:e0141480

    PubMed  PubMed Central  Google Scholar 

  • McCann C (1953) Aposematic insects and their food plants. JBNHS 51:752–754

    Google Scholar 

  • Meinwald J, Chalmers AM, Pliske TE, Eisner T (1968) Pheromones III. Identification of trans, trans 10-dydroxy-3,7-dimethyl-2,6-decadienoic acid as a major component in the “hairpencil” secretion of the male monarch butterfly. Tetrahedron Lett 9:4893–4896

    Google Scholar 

  • Meinwald J, Chalmers AM, Pliske TE, Eisner T (1969) Identification and synthesis of trans, trans-3,7-dimethyl-2,6-decadien-l,10-dioic acid, a component of the pheromonal secretion of the male monarch butterfly. Chem Commun 3:86–87

    Google Scholar 

  • Motulsky H (1999) Analysing data with GraphPad prism software. GraphPad Software Inc, SanDiego, California, www.graphpad.com

  • Neal WM, Rusoff LL, Ahmann CF (1935) The isolation and some properties of an alkaloid from Crotalaria spectabilis Roth. J Am Chem Soc 57:2560–2561

    CAS  Google Scholar 

  • Oberhauser KS (2015) Model programs for citizen science, education, and conservation—an overview. In: Oberhauser KS, Nail KR, Altizer S (eds) Monarchs in a changing world—biology and conservation of an iconic butterfly, 1st edn. Cornell University Press, Ithaca, pp 1–3

    Google Scholar 

  • Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    CAS  Google Scholar 

  • Orr AG, Trigo JR, Witte L, Hartmann T (1996) Sequestration of pyrrolizidine alkaloids by larvae of Tellervo zoilus (Lepidoptera: Ithomiinae) and their sole in the chemical protection of adults against the spider Nephila maculate (Araneidae). Chemoecology 7:68–73

    CAS  Google Scholar 

  • Penz CM, Krenn HW (2000) Behavioral adaptations to pollen-feeding in Heliconius butterflies (Nymphalidae, Heliconiinae): an experiment using Lantana flowers. J Insect Behav 13:865–880

    Google Scholar 

  • Petr D, Stewart KW (2004) Comparative morphology of sensilla styloconica on the proboscis of North American Nymphalidae and other selected taxa (Lepidoptera): systematic and ecological considerations. Trans Am Entomol Soc 130:293–409

    Google Scholar 

  • Pliske TE (1975a) Courtship behavior of the monarch butterfly, Danaus plexippus L. Ann Entomol Soc Am 68:143–151

    Google Scholar 

  • Pliske TE (1975b) Attraction of Lepidoptera to plants containing pyrrolizidine alkaloids. Environ Entomol 4:455–473

    Google Scholar 

  • Pliske TE (1975c) Pollination of pyrrolizidine alkaloid-containing plants by male Lepidoptera. Environ Entomol 4:474–479

    Google Scholar 

  • Pliske TE, Eisner T (1969) Sex pheromone of the queen butterfly: biology. Science 164(3884):1170–1172

    CAS  PubMed  Google Scholar 

  • Ramos BCM (2018) Processos cognitivos em borboletas danaíneas e heliconíneas no contexto da alimentação. Dissertation, Universidade Federal do Rio de Janeiro

  • Ramos BCM, Rodríguez-Gironés MA, Rodrigues D (2017) Learning in two butterfly species when using flowers of the tropical milkweed Asclepias curassavica: no benefits for pollination. Am J Bot 104:1168–1178

    PubMed  Google Scholar 

  • Ramos BCM, Trigo JR, Rodrigues D (2019) The specialization continuum: decision-making in butterflies with different diet requirements. Behav Proc 165:14–22

    Google Scholar 

  • Rodrigues D (2016) Both associative learning and speed accuracy trade-off occur in the southern monarch butterfly when visiting flowers. Ethol Ecol Evol 28:30–41

    Google Scholar 

  • Rothschild M, Marsh N (1978) Some peculiar aspects of danaid/plant relationships. Entomol Exp App 24:637–650

    Google Scholar 

  • Rothschild M, von Euw J, Reichstein T, Smith DAS, Pierre J (1975) Cardenolide storage in Danaus chrysippus (L.) with additional notes on D. plexippus. Proc R Soc Lond B 190:1–31

    CAS  Google Scholar 

  • Santos CG (2002) Aspectos do comportamento e morfologia envolvidos na alimentação dos adultos de Dryas iulia alcionea e Heliconius erato phyllis (Lepidoptera: Nymphalidae). Thesis, Universidade Federal do Rio Grande do Sul

  • Schneider D, Boppré M, Schneider H, Thompson WR, Boriack CJ, Petty RL, Meinwald J (1975) A pheromone precursor and its uptake in male Danaus butterflies. J Physiol 97:245–256

    CAS  Google Scholar 

  • Smith DAS (2014) African queens and their kin: a Darwinian odyssey. Brambleby Books, Somerset

    Google Scholar 

  • Smith DAS, Lushai G, Allen JA (2005) A classification of Danaus butterflies (Lepidoptera: Nymphalidae) based upon data from morphology and DNA. Zool J Linn Soc 144:191–212

    Google Scholar 

  • Stelljes ME, Seiber JN (1990) Pyrrolizidine alkaloids in an overwintering population of monarch butterflies (Danaus plexippus) in California. J Chem Ecol 16:1459–1470

    CAS  PubMed  Google Scholar 

  • Trigo JR (1987) Ecologia química na interação Ithomiinae (Lepidoptera: Nymphalidae) / Echitoideae (Angiospermae: Apocynaceae). Thesis, Universidade Estadual de Campinas

  • Trigo JR (1993) Alcaloides pirrolizidínicos em borboletas Ithominae. Alguns aspectos em ecologia química. Dissertation, Universidade Estadual de Campinas

  • Trigo JR, Brown KS (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22–29

    CAS  Google Scholar 

  • Trigo JR, Motta PC (1990) Evolutionary implications of pyrrolizidine alkaloid assimilation by danaine and ithomiine larvae (Lepidoptera: Nymphalidae). Experientia 46:332–334

    CAS  Google Scholar 

  • Trigo JR, Brown KS, Witte L, Hartmann T, Ernst L, Barata LES (1996) Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soc 58:99–123

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Bizarro, R. Locke and N. Locke for allowing us to collect at Reserva Ecológica de Guapiaçú (REGUA). They are especially grateful to C. E. de Viveiros Grelle for laboratory support. N. S. da Rocha generously allowed us to conduct the field study in his property. V. F. da Veiga advised us in relation to critical point drying and gold coating. They pay their special thanks to I. D. da Silva-Neto and M. Sales for help with the scanning electron microscopy. A. Tenger-Trolander, D. Massardo and M. Kronforst kindly provided specimens of Danaus plexippus. C. Odete Antinarelli and the staff of Horto da Prefeitura Universitária/ UFRJ provided logistics for the insectary experiments. They also thank F. Gusmão and members of Laboratório de Interações Inseto-Planta/UFRJ for laboratory assistance, A. F. S. Neto for field assistance and S. Rasmann for critically reviewing early drafts of the manuscript. They are also grateful to Steve Malcolm and one anonymous reviewer whose suggestions substantially improved the manuscript. They also thank L. Eaton for language editing. BCM Ramos received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Foundation. D. Rodrigues is supported by a Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant No. (400789/2014-0). The authors declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna de Cássia Menezes Ramos.

Additional information

Communicated by Dagmar Voigt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

José Roberto Trigo—deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, B.C.M., Trigo, J.R. & Rodrigues, D. Danaus butterflies of the Americas do not perform leaf-scratching. Arthropod-Plant Interactions 14, 521–529 (2020). https://doi.org/10.1007/s11829-020-09766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-020-09766-5

Keywords

Navigation