Skip to main content
Log in

Uncertain Lambert Problem: A Probabilistic Approach

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

A complete solution to the uncertain Lambert problem is considered in this paper. While the deterministic Lambert problem considers the two point boundary value problem of the two body problem with a fixed transfer time, its uncertain counterpart is shown to be related to the propagation of uncertainty from a set of initial conditions. In contrast to the linearized solutions of the uncertain Lambert problem associated with a particular solution, our paper outlines a numerical process to characterize the non-Gaussian uncertainty associated with all solutions. Applications of solutions to the uncertain Lambert problem are detailed using representative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdelkhalik, O., Mortari, D.: N-impulse orbit transfer using genetic algorithms. J. Spacecr. Rocket. 44(2), 456–460 (2007)

    Article  Google Scholar 

  2. Adurthi, N., Majji, M., Mishra, U., Singla, P.: Conjugate Unscented Transform Based Joint Probability Data Association. In: 2017 AIAA/AAS Astrodynamics Specialist Conference, Stevenson, WA (2017)

  3. Adurthi, N., Singla, P.: Conjugate unscented transformation based approach for accurate conjunction analysis. J. Guid. Control Dyn. 38(Battin Special Issue), 1642–1658 (2015)

    Article  Google Scholar 

  4. Adurthi, N., Singla, P., Singh, T.: The Conjugate Unscented Transform 2014; an Approach to Evaluate Multi-Dimensional Expectation Integrals. In: American Control Conference (ACC), pp. 5556–5561 (2012)

  5. Battin, R. H.: Lambert’s problem revisited. AIAA J. 15(5), 707–713 (1977)

    Article  MathSciNet  Google Scholar 

  6. Battin, R. H.: An introduction to the mathematics and methods of astrodynamics. Aiaa (1999)

  7. Benamou, J. D., Brenier, Y.: A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Georgiou, T.T., Pavon, M.: Optimal transport over a linear dynamical system. IEEE Trans. Autom. Control 62(5), 2137–2152 (2017). https://doi.org/10.1109/TAC.2016.2602103

    Article  MathSciNet  Google Scholar 

  9. Cover, T. M., Thomas, J. A.: Elements of Information Theory. Wiley Series in Telecommunications. Wiley Interscience, New York (1991)

    Book  Google Scholar 

  10. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithm. 18, 209–232 (1998). https://doi.org/10.1023/A:1019129717644

    Article  MathSciNet  Google Scholar 

  11. Gilks, W. R., Richardson, S., Spiegelhalter, D.: Markov chain Monte Carlo in practice. Chapman and hall/CRC (1995)

  12. Jazwinski, A. H.: Stochastic Processes and Filtering Theory [By] Andrew H. Jazwinski. Academic Press, New York (1970)

    Google Scholar 

  13. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control AC-45(3), 477–482 (2000)

    Article  MathSciNet  Google Scholar 

  14. Majji, M., Junkins, J.L., Turner, J.D.: Measurement model nonlinearity in estimation of dynamical systems. J. Astronaut. Sci. 59(1), 41–62 (2012). https://doi.org/10.1007/s40295-013-0005-6

    Article  Google Scholar 

  15. Marsden, B.: Initial orbit determination - The pragmatist’s point of view 90, 1541–1547. https://doi.org/10.1086/113867 (1985)

  16. Nagavenkat Adurthi, P. S.: Conjugate unscented transformation-based approach for accurate conjunction analysis. J. Guid. Control Dyn. 38(9), 1642–1658 (2015)

    Article  Google Scholar 

  17. Papoulis, A., Pillai, S. U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw Hill, Boston (2002)

    Google Scholar 

  18. Prussing, J. E., Conway, B. A.: Orbital mechanics. Oxford University Press, USA (1993)

  19. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979)

    Article  Google Scholar 

  20. Roecker, J., Phillis, G.: Suboptimal joint probabilistic data association. IEEE Trans. Aerosp. Electron. Syst. 29(2), 510–518 (1993)

    Article  Google Scholar 

  21. Roecker, J., Phillis, G.: Suboptimal joint probabilistic data association. IEEE Trans. Aerosp. Electron. Syst. 29(2), 510–517 (1993)

    Article  Google Scholar 

  22. Schumacher, P., Sabol, C., Higginson, C. C., Alfriend, K. T.: Uncertain Lambert Problem. J. Guid. Control Dyn. 38, 1573–1584 (2015)

    Article  Google Scholar 

  23. Stroud, A. H.: Approximate calculation of multiple integrals. Prentice Hall, Englewood Ccliffs (1971)

  24. Stroud, A. H., Secrest, D.: Gaussian quadrature formulas. Prentice Hall, Englewood Ccliffs (1966)

  25. Vallado, D. A., Mcclain, W.D.: Fundamentals of Astrodynamics and Applications. Space Technology Library Microcosm Press (2001)

  26. Vinko, T., Izzo, D.: Global optimisation heuristics and test problems for preliminary spacecraft trajectory design. Eur. Space Agency, Adv. Concepts Team, ACT Tech. Rep., Tech. Rep GOHTPPSTD (2008)

  27. Weisman, R., Majji, M., Alfriend, K. T.: Solution of liouville’s equation for uncertainty characterization of the main problem in satellite. Tech. Sci. Press CMES 111(3), 269–304 (2016)

    Google Scholar 

  28. Woollands, R. M., Read, J., Hernandez, K., Probe, A., Junkins, J. L.: Unified lambert tool for massively parallel applications in space situational awareness. J. Astronaut. Sci. 65(1), 29–45 (2018)

    Article  Google Scholar 

  29. Woollands, R.M., Read, J.L., Probe, A.B., Junkins, J.L.: Multiple revolution solutions for the perturbed lambert problem using the method of particular solutions and picard iteration. J. Astronaut. Sci. 64(4), 361–378 (2017). https://doi.org/10.1007/s40295-017-0116-6

    Article  Google Scholar 

  30. Yang, Z., Zhong Luo, Y., Zhang, J.: Robust Planning of Nonlinear Rendezvous with Uncertainty. J. Guid. Control Dyn. 40, 1954–1967 (2017)

    Article  Google Scholar 

  31. Zhang, G., Mortari, D., Zhou, D.: Constrained multiple-revolution lambert’s problem. J. Guid. Control Dyn. 33(6), 1779–1786 (2010)

    Article  Google Scholar 

  32. Zhang, G., Zhou, D., Mortari, D., Akella, M.R.: Covariance analysis of lambert’s problem via lagrange’s transfer-time formulation. Aerosp. Sci. Technol. 77, 765 – 773 (2018). https://doi.org/10.1016/j.ast.2018.03.039. http://www.sciencedirect.com/science/article/pii/S1270963817311999

    Article  Google Scholar 

Download references

Acknowledgments

The work in this paper is partially supported by the National Science Foundation under Award No. NSF CMMI-1634590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagavenkat Adurthi.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adurthi, N., Majji, M. Uncertain Lambert Problem: A Probabilistic Approach. J Astronaut Sci 67, 361–386 (2020). https://doi.org/10.1007/s40295-019-00205-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00205-z

Keywords

Navigation