Skip to main content
Log in

Robust Controller Design of Non-minimum Phase Hypersonic Aircrafts Model based on Quantitative Feedback Theory

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Hypersonic aircrafts are introduced as a platform for cost-efficient access to space. However, challenging problems of control hypersonic aircrafts exist due to aerodynamic parametric uncertainties, external disturbances and unstable internal dynamics. This paper explores how to design and tune a controller with quantitative feedback theory (QFT). Furthermore, robust controllers based on QFT for longitudinal model are designed to solve the non-minimum phase problem and the large aerodynamic parameters uncertainty problem due to complex flight environment. According to the summary of the plant dynamics and control method, different performance specifications are presented and transformed into a set of design criteria in transfer function form as constrains for the controller design. Simulation results obtained with the designed controller and prefilter demonstrate that the designed robust controller can guarantee the stability of hypersonic aircraft model and satisfy the given performance specifications. Simulation comparisons to LQR control approach are performed to demonstrate the advantages of the proposed QFT robust controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Wu, L., Yang, X., Li, F.: Nonfragile output tracking control of hypersonic air-breathing vehicles with an LPV model. IEEE/ASME Trans. Mechatron. 18(4), 1280–1288 (2013)

    Article  Google Scholar 

  2. Voland, R.T., Huebner, L.D., McClinton, C.R.: X-43a Hypersonic vehicle technology development. Acta Astronaut. 59(5), 181–191 (2006)

    Article  Google Scholar 

  3. Xu, B., Shi, Z.: Universal Kirging control of hypersonic aircraft model using predictor model without back-stepping. IET Control Theory Appl. 7(4), 573–583 (2012)

    Article  Google Scholar 

  4. Buschek, H., Calise, A.J.: Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J. Guid. Control. Dyn. 20(1), 42–48 (1997)

    Article  Google Scholar 

  5. Parker, J.T., Serrani, A., Yurkovich, S., Bolender, M.A., Doman, D.B.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control. Dyn. 30(3), 856–869 (2007)

    Article  Google Scholar 

  6. Liu, H., Li, D., Zuo, Z., Zhong, Y.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63(4), 2263–2274 (2016)

    Google Scholar 

  7. Liu, H., Wang, X., Zhong, Y.: Quaternion-based robust attitude control for uncertain robotic quadrotors. IEEE Trans. Ind. Inf. 11(2), 406–415 (2015)

    Article  Google Scholar 

  8. Liu, H., Zhao, W., Zuo, Z., Zhong, Y.: Robust control for quadrotors with multiple time-varying uncertainties and delays. IEEE Trans. Ind. Electron. 64 (2), 1303–1312 (2017)

    Article  Google Scholar 

  9. Xu, H., Mirmirani, M.D., Ioannou, A.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control. Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  10. Fiorentini, L., Serrani, A., Bolender, M.A., Doman, D.B.: Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Control. Dyn. 32(2), 401–416 (2009)

    Article  Google Scholar 

  11. Wilcox, Z.D., MacKunis, W., Bhat, S., Lind, R., Dixion, W.E.: Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J. Guid. Control. Dyn. 33(4), 1213–1224 (2010)

    Article  Google Scholar 

  12. Hu, X., Wu, L., Hu, C., Gao, H.: Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle. IET Control Theory Appl. 6 (9), 1238–1249 (2012)

    Article  MathSciNet  Google Scholar 

  13. Li, Z., Zhou, W., Liu, H.: Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems. ISA Trans. 64(9), 1–11 (2016)

    Article  Google Scholar 

  14. Wang, J., Zong, Q., Tian, B., Liu, H.: Flight control for a flexible air-breathing hypersonic vehicle based on quasi-continuous high-order sliding mode. J. Syst. Eng. Electron. 24(2), 288–295 (2013)

    Article  Google Scholar 

  15. Yang, J., Li, S., Sun, C., Guo, L.: Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1263–1275 (2013)

    Article  Google Scholar 

  16. Hu, X., Hu, C., Wu, L., Gao, H.: Output tracking control for non-minimum phase flexible air-breathing hypersonic vehicle models. J. Aerosp. Eng. 28(2), 1–11 (2015)

    Google Scholar 

  17. Fiorentini, L., Serrani, A.: Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica 48(7), 1248–1261 (2012)

    Article  MathSciNet  Google Scholar 

  18. Hovakimyana, N., Vitae, A., Yangb, B., Vitae, A., Calise, A.J.: Adaptive output feedback control methodology applicable to non-minimum phase nonlinear systems. Automatica 42(4), 513–522 (2006)

    Article  MathSciNet  Google Scholar 

  19. Horowitz, I., Sidi, M.: Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerance. Int. J. Control. 16(2), 287–309 (1972)

    Article  Google Scholar 

  20. Horowitz, I., Sidi, M.: Synthesis of feedback systems with nonlinear time uncertain plants to satisfy quantitative performance specifications. IEEE Trans. Autom. Control 64(3), 123–130 (1976)

    MathSciNet  Google Scholar 

  21. Horowitz, I.: Quantitative synthesis of uncertain multiple input-multiple output feedback systems. Int. J. Control. 30(1), 81–106 (1979)

    Article  MathSciNet  Google Scholar 

  22. Kerr, M., Jayasuriya, S., Asokanthan, S.: Robust stability of sequential MIMO QFT designs. ASME Journal of Dynamic Systems, Measurement and Control 127(2), 250–256 (2005)

    Article  Google Scholar 

  23. Kerr, M., Jayasuriya, S., Asokanthan, S.: On stability in non-sequential MIMO QFT designs. ASME Journal of Dynamic Systems, Measurement and Control 127(1), 98–104 (2005)

    Article  Google Scholar 

  24. Boje, E.: Non-diagonal controllers in MIMO quantitative feedback design. Int. J. Robust Nonlinear Control 12(4), 303–320 (2002)

    Article  MathSciNet  Google Scholar 

  25. Horowitz, I., Sidi, M.: Optimum synthesis of non-minimum phase feedback system with plant uncertainty. Int. J. Control. 27(3), 361–386 (1978)

    Article  MathSciNet  Google Scholar 

  26. Chen, W., Ballance, D.: QFT Design for uncertain non-minimum phase and unstable plants revisited. Int. J. Control. 74(9), 957–965 (2001)

    Article  MathSciNet  Google Scholar 

  27. Reynolds, R., Pachter, M., Hoipis, C.H.: Full envelop flight control system design using quantitative feedback theory. J. Guid. Control. Dyn. 19(1), 23–29 (1996)

    Article  Google Scholar 

  28. Janardanan, J., Jayakumar, M.: Robust longitudinal flight controller design for a hypersonic re-entry vehicle. In: 14Th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, Canberra, Australia, pp. 1–7 (2006)

  29. Nataraj, P.S.V.: Computation of QFT bounds for robust tracking specifications. Automatica 38(2), 327–334 (2002)

    Article  Google Scholar 

  30. Chait, Y., Yaniv, O.: Multi-input/single-output computer-aided control design using the quantitative feedback theory. Int. J. Robust Nonlinear Control 3(23), 47–54 (1993)

    Article  Google Scholar 

  31. Zhao, Y., Jayasuriya, S.: On the generation of QFT bounds for general interval plants. ASME Journal of Dynamic Systems Measurement and Control 116 (12), 618–627 (1994)

    Article  Google Scholar 

  32. Rodrigues, J., Chait, Y., Yaniv, O.: An efficient algorithm for computing QFT bounds. ASME Journal of Dynamic Systems Measurement and Control 119 (11), 548–552 (1997)

    Article  Google Scholar 

  33. Nataraj, P.: Interval QFT: a mathematical and computational enhancement of QFT. Int. J. Robust Nonlinear Control 12(4), 385–402 (2002)

    Article  MathSciNet  Google Scholar 

  34. Yu, G., Li, H.: Hierarchical structured robust adaptive attitude controller design for reusable launch vehicles. J. Syst. Eng. Electron. 26(4), 813–825 (2015)

    Google Scholar 

  35. Liu, H., Lu, G., Zhong, Y., Robust, L.Q.R.: Attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Trans. Ind. Electron. 60(10), 4627–4636 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61873012 and 61503012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, W. & Liu, H. Robust Controller Design of Non-minimum Phase Hypersonic Aircrafts Model based on Quantitative Feedback Theory. J Astronaut Sci 67, 137–163 (2020). https://doi.org/10.1007/s40295-019-00187-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00187-y

Keywords

Navigation