Skip to main content
Log in

A Drag Coefficient Modeling Approach Using Spatial and Temporal Fourier Expansions for Orbit Determination

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The estimation and modeling of drag effects on low altitude satellites and debris is a limiting problem in the prediction of their orbits over time. Independent of the stochastic variations in atmospheric density, which drive the magnitude of the drag force, there are systematic variations in the drag coefficient due to satellite specific factors and atmospheric conditions. These include satellite attitude shifts, variations in ambient atmospheric parameters such as temperature, molecular composition, and the satellite wall temperature. Thus, even with accurate empirical models for the atmospheric density, there remain systematic model uncertainties and time variations in the effective coefficient of drag that affect the satellite’s motion, which are not captured using the standard constant drag coefficient model. We report on our recent research on developing Fourier expansion based models of an arbitrary object’s coefficient of drag with the overall purpose to develop corrections to the standard model. If the attitude profile of a satellite or object is known, a Fourier series expansion of the overall coefficient of drag as a function of wind vector direction in the body-frame can be introduced. For bodies with unknown or more complex attitude profiles, we introduce a periodically varying drag coefficient tied to a satellite’s position in orbit. This model enables the estimation of higher-order temporal variations in drag that would be correlated with variations in altitude, temperature and density. An improved prediction capability over the standard cannonball model is shown and the formulation of how it can be incorporated into standard filtering techniques is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cook, G.: Satellite drag coefficients. Planet. Space Sci. 13(10), 929–946 (1965). https://doi.org/10.1016/0032-0633(65)90150-9

    Article  Google Scholar 

  2. Dakermanji, G., Burns, M., Lee, L.: The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance. In: 11th European Space Power Conference (2016)

  3. Doornbos, E.: Thermospheric Density and Wind Determination from Satellite Dynamics. PhD thesis, Delft University of Technology (2011)

  4. Emmert, J.: Thermospheric mass density: a review. Adv. Space Res. 56, 773–824 (2015). https://doi.org/10.1016/j.asr.2015.05.038

    Article  Google Scholar 

  5. Goodman, F.O., Wachman, H.Y.: Formula for Thermal Accommodation Coefficient. M.I.T. Fluid Dynamics Research Laboratory Report, Massachusetts Institute of Technology (1966)

  6. Gregory, J., Peters, P.: A measurement of the angular distribution of 5 eV atomic oxygen scattered off a solid surface in earth orbit. Proceedings of the 15th International Symposium on Rarefied Gas Dynamics 1, 641–656 (1987)

    Google Scholar 

  7. Harrison, I., Swinerd, J.: A free molecule aerodynamic investigation using multiple satellite analysis. Planet. Space. Sci. 44(2), 171–180 (1996)

    Article  Google Scholar 

  8. Hesar, SG, Scheeres, DJ, McMahon, JW: Precise model for small-body thermal radiation pressure acting on spacecraft. J. Guid. Control Dyn. 40(10), 2432–2441 (2017). https://doi.org/10.2514/1.G002566

    Article  Google Scholar 

  9. Hesar, SG, Scheeres, DJ, McMahon, JW: Precise solar radiation pressure models for small-body orbiters: applications to OSIRIS-REx spacecraft. J. Guid. Control Dyn. 40(7), 1638–1650 (2017). https://doi.org/10.2514/1.G002323

    Article  Google Scholar 

  10. Imbro, D., Moe, M.M., Moe, K.: On fundamental problems in the deduction of satellite densities from satellite drag. J. Geophys. Res. 80(5), 3077–3086 (1975)

    Article  Google Scholar 

  11. Koppenwallner, G.: Comment on special section: New perspectives on the satellite drag environments of earth, mars and venus. J. Spacecr. Rocket. 45(6), 1324–1327 (2008). https://doi.org/10.2514/1.37539

    Article  Google Scholar 

  12. Liou, JC, Johnson, N: Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation. National Aeronautics and Space Administration. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080029282.pdf (2005)

  13. Lucchesi, D.: Reassessment of the error modelling of nongravitational perturbations on LAGEOS II and their impact in the Lense-Thirring determination. Part I. Planet. Space Sci. 49, 447–463 (2001). https://doi.org/10.1016/S0032-0633(00)00168-9

    Article  Google Scholar 

  14. March, G., Doornbos, P., Visser, P.: High-fidelity geometry models for improving the consistency of CHAMP, GRACE, GOCE and Swarm thermospheric density data sets. Advances in Space Research 63, 213–238 (2019). https://doi.org/10.1016/j.asr.2018.07.009

    Article  Google Scholar 

  15. McLaughin, C., Mance, S., Lechtenberg, T.: Drag coefficient estimation in orbit determination. J. Astronaut. Sci. 58(3), 513–530 (2011). https://doi.org/10.1007/BF03321183

    Article  Google Scholar 

  16. McMahon, J.W., Scheeres, D.J.: New solar radiation pressure force model for navigation. J. Guid. Control Dyn. 33(5), 1418–1428 (2010). https://doi.org/10.2514/1.48434

    Article  Google Scholar 

  17. McMahon, J.W., Scheeres, D.J.: Improving space object catalog maintenance through advances in solar radiation pressure modelling. J. Guid. Control Dyn. 38(8), 1366–1381 (2015). https://doi.org/10.2514/1.G000666

    Article  Google Scholar 

  18. Mehta, PM, McLaughin, CA, Sutton, EK: Drag coefficient modeling for grace using Direct Simulation Monte Carlo. Advances in Space Research 52(12), 2035–2051 (2013). https://doi.org/10.1016/j.asr.2013.08.033

    Article  Google Scholar 

  19. Mehta, P.M., Walker, A., Lawrence, E., Linares, R., Higdon, D., Koller, J.: Modeling satellite drag coefficients with response surfaces. Advances in Space Research 54, 1590–1607 (2014). https://doi.org/10.1016/j.asr.2014.06.033

    Article  Google Scholar 

  20. Mehta, PM, Walker, A, Sutton, EK, Godinez, HC: New density estimates derived using accelerometers on board the CHAMP and GRACE satellites. Space Weather 15, 558–576 (2017). https://doi.org/10.1002/2016SW001562

    Article  Google Scholar 

  21. Moe, K., Moe, M.M.: Gas surface interactions and satellite drag coefficients. Planet. Space Sci. 53(8), 793–801 (2005). https://doi.org/10.1016/j.pss.2005.03.005

    Article  Google Scholar 

  22. Moe, K., Moe, M.M., Wallace, S.D.: Drag coefficients of spheres in free molecular flow. Adv. Astronaut. Sci. 93(1), 391–406 (1996)

    Google Scholar 

  23. Moe, M.M., Tsang, L.C.: Drag coefficients for Cones and Cylinders According to Schamberg’s Model. AIAA J. 11(3), 396–399 (1973). https://doi.org/10.2514/3.6764

    Article  Google Scholar 

  24. Moe, M.M., Wallace, S.D., Moe, K.: Recommended drag coefficients for aeronomic satellites. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory 87, 349–356 (1995)

    Google Scholar 

  25. Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods and Applications. Springer. https://doi.org/10.1007/978-3-642-58351-3 (2000)

  26. NAIF: An Overview of Reference Frames and Coordinate Systems in the SPICE Context. https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf (2019)

  27. National Research Council: Continuing Kepler’s Quest: Assessing Air Force Space Command’s Astrodynamics Standards. The National Academies Press, Washington D.C. (2012). https://doi.org/10.17226/13456

    Google Scholar 

  28. Nocilla, S.: The surface re-emission law in free molecular flow. In: 3rd Symposium Rarefied Gas Dynamics (1962)

  29. Pardini, C., Anselmo, L., Moe, K., Moe, M.: Drag and energy accommodation coefficient during sunspot maximum. Adv. Space Res. 45(45), 638–650 (2010). https://doi.org/10.1016/j.asr.2009.08.034

    Article  Google Scholar 

  30. Pilinski, M.D., Argrow, B.M., Palo, S.E.: Semi-empirical Model for Satellite Energy-Accommodation Coefficients. J. Spacecr. Rocket. 47(6), 951–957 (2010). https://doi.org/10.2514/1.49330

    Article  Google Scholar 

  31. Pilinski, M.D., Argrow, B.M., Palo, S.E., Bowman, B.R.: Semi-Empirical Satellite accommodation model for spherical and randomly tumbling objects. J. Spacecr. Rocket. 50(3), 556–571 (2013). https://doi.org/10.2514/1.A32348

    Article  Google Scholar 

  32. Poularikas, A.: The Handbook of Formulas and Tables for Signal Processing. CRC Press LLC, Boca Raton (1999)

    MATH  Google Scholar 

  33. Prieto, D.M., Graziano, B.P., Roberts, P.C.: Spacecraft drag modelling. Progress in Aerospace Sciences 64, 56–65 (2014). https://doi.org/10.1016/j.paerosci.2013.09.001

    Article  Google Scholar 

  34. Saltsburg, H., Smith, J.N., Rogers, M.: Fundamentals of Gas Surface Interactions. Academic Press, New York (1967)

    Google Scholar 

  35. Schamberg, R.: A New Analytic Representation of Surface Interaction for Hyperthermal Free Molecular Flow. Academic Press, Santa Monica (1959)

    Google Scholar 

  36. Scheeres, D., Hesar, S., Tardivel, S., Hirabayashi, M., Farnocchia, D., McMahon, J., Chesley, S., Barnouin, O., Binzel, R., Bottke, W., Daly, M., Emery, J., Hergenrother, C., Lauretta, D., Marshall, J., Michel, P., Nolan, M., Walsh, K.: The geophysical environment of Bennu. Icarus 276, 116–140 (2016). https://doi.org/10.1016/j.icarus.2016.04.013

    Article  Google Scholar 

  37. Sentman, L.: Free Molecule Flow Theory and Its Application to the Determination of Aerodynamic Force. Lmsc-448514, ad 265-409, Lockheed Missiles and Space company (1961)

  38. Sun, F., Gramacy, R.B., Haaland, B., Lawrence, E., Walker, A.: Emulating satellite drag from large simulation experiments. arXiv:1712.00182(2019)

  39. Sutton, E.K.: Normalized force coefficients of satellites with elongated shapes. J. Spacecr. Rocket. 46(1), 112–116 (2009). https://doi.org/10.2514/1.40940

    Article  Google Scholar 

  40. Tapley, B.D., Schutz, B.E., Born, G.H.: Statistical Orbit Determination. Elsevier Academic Press (2004)

  41. Walker, A., Mehta, P., Koller, J.: Drag coefficient model using the Cercignani–Lampis–Lord Gas–Surface interaction model. J. Spacecr. Rocket. 51(5), 1544–1563 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Ray.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, V., Scheeres, D.J., Hesar, S.G. et al. A Drag Coefficient Modeling Approach Using Spatial and Temporal Fourier Expansions for Orbit Determination. J Astronaut Sci 67, 1139–1168 (2020). https://doi.org/10.1007/s40295-019-00200-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00200-4

Keywords

Navigation