Skip to main content
Log in

ORCHESTRA: Supercharging Wireless Backhaul Networks Through Multi-technology Management

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Today’s and tomorrow’s networks are becoming increasingly complex and heterogeneous with a large diversity of devices and technologies. To meet growing demand, and support client mobility there is need for intelligent mechanisms like multi-technology load balancing and handovers. Current solutions, like Multipath Transmission Control Protocol (MPTCP), fail to provide a fine-grained, coordinated, and transparent answer to this heterogeneity, while the lower layers of the Open Systems Interconnection stack simply ignore it by providing full separation of layers. Therefore, we introduce ORCHESTRA, a data link layer framework for the management of multi-technology networks and devices, enabling packet-level dynamic handovers, load balancing, and duplication across network technologies. The framework is the first of its kind in providing fine-grained packet-level control across different technologies in a network-wide manner. Moreover, it works on top of existing standards without the need for hardware changes. This is achieved through a fully transparent virtual Medium Access Control layer and a Software-Defined Networking controller with global intelligence. The framework is implemented in a prototype running on off-the-shelf hardware and we demonstrate its features across different IEEE 802.11 technologies and 4G (Long Term Evolution). We demonstrate that ORCHESTRA outperforms MPTCP and allows for real-time inter-technology handovers and that overall throughput and reliability are improved in wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ericsson, “Ericsson mobility Report,” Tech. Rep. https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-november-2017.pdf. (2017)

  2. Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2017–2022,” https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf. (2017)

  3. Afaqui, M.S., Garcia-Villegas, E., Lopez-Aguilera, E.: IEEE 802.11ax: challenges and requirements for future high efficiency WiFi. IEEE Wirel. Commun. 24(3), 130–137 (2016)

    Article  Google Scholar 

  4. Wang, R., Hu, H., Yang, X.: Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access 2, 1200–1208 (2014)

    Google Scholar 

  5. Zimmermann, H.: OSI reference model—the ISO model of architecture for open systems interconnection. IEEE Trans. Commun. 28(4), 425–432 (1980)

    Article  Google Scholar 

  6. Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., Vasilakos, A.V.: Software-defined and virtualized future mobile and wireless networks: a survey. Mobile Netw. Appl. 20(1), 4–18 (2015)

    Article  Google Scholar 

  7. Sagar, V., Chandramouli, R., Subbalakshmi, K.P.: Software defined access for HetNets. IEEE Commun. Mag. 54(1), 84–89 (2016)

    Article  Google Scholar 

  8. Yang, S.N., Ho, S.W., Lin, Y.B., Gan, C.H.: A multi-RAT bandwidth aggregation mechanism with software-defined networking. J. Netw. Comput. Appl. 61, 189–198 (2016)

    Article  Google Scholar 

  9. Chen, M., Li, A., Liu, W., Hong, J.: A multi-wireless bandwidth aggregation mechanism in SDN networks. Open Electric. Electron. Eng. J. 9(1), 321–327 (2015)

    Article  Google Scholar 

  10. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: “TCP extensions for multipath operation with multiple addresses,” Internet Requests for Comments, RFC Editor, RFC 6824. http://www.rfc-editor.org/rfc/rfc6824.txt. (2013)

  11. Pol, R.V.D., Boele, S., Dijkstra, F., Barczyk, A., van Malenstein, G., Chen, J.H., Mambretti, J.: “Multipathing with MPTCP and OpenFlow,” In: High Performance Computing, Networking, Storage and Analysis (SCC) 2012, pp. 1617–1624 (2012)

  12. Kim, H.A., Oh, B.H., Lee, J.: “Improvement of MPTCP performance in heterogeneous network using packet scheduling mechanism,” In: APCC 2012—18th Asia-Pacific Conference on Communications: “Green and Smart Communications for IT Innovation”, pp. 842–847 (2012)

  13. IEEE Std. 1905.1-2013, “IEEE standard for convergent digital home network for heterogeneous technologies,” (2013)

  14. Hoymann, C., Astely, D., Stattin, M., Wikström, G., Cheng, J.F.T., Höglund, A., Frenne, M., Blasco, R., Huschke, J., Gunnarsson, F.: LTE release 14 outlook. IEEE Commun. Mag. 54(6), 44–49 (2016)

    Article  Google Scholar 

  15. Maattanen, H.L., Masini, G., Bergstrom, M., Ratilainen, A., Dudda, T.: “LTE-WLAN aggregation (LWA) in 3GPP Release 13 & Release 14,” In: 2017 IEEE Conference on Standards for Communications and Networking, CSCN 2017, pp. 220–226 (2017)

  16. Nuggehalli, P.: LTE-WLAN aggregation [industry perspectives]. IEEE Wirel. Commun. 23(4), 4–6 (2016)

    Article  Google Scholar 

  17. De Schepper, T., Bosch, P., Zeljkovic, E., Haxhibeqiri, J., Hoebeke, J., Famaey, J., Latré, S.: ORCHESTRA: enabling inter-technology network management in heterogeneous wireless networks. IEEE Trans. Netw. Serv. Manag. 15(4), 1733–1746 (2018)

    Article  Google Scholar 

  18. De Schepper, T., Latré, S., Famaey, J.: Scalable load balancing and flow management in dynamic heterogeneous wireless networks. J. Netw. Syst. Manag. 15(2), 693–706 (2019)

    Google Scholar 

  19. Meyer, T., Langendörfer, P., Bahr, M., Suraci, V., Nowak, S., Jennen, R.: “An inter-mac architecture for heterogeneous gigabit home networks,” In: 20th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2009)

  20. Macone, D., Oddi, G., Palo, A., Suraci, V.: A dynamic load balancing algorithm for Quality of Service and mobility management in next generation home networks. Telecommun. Syst. 53(3), 265–283 (2013)

    Article  Google Scholar 

  21. Gallo, P., Kosek-Szott, K., Szott, S., Tinnirello, I.: Sdn@home: a method for controlling future wireless home networks. IEEE Commun. Mag. 54(5), 123–131 (2016)

    Article  Google Scholar 

  22. Dezfouli, B.: A review of software-defined WLANs: Architectures and central control mechanisms. IEEE Commun. Surv. Tutor. 21, 431–463 (2018)

    Article  Google Scholar 

  23. Sequeira, L., de la Cruz, J.L., Ruiz-Mas, J., Saldana, J., Fernandez-Navajas, J., Almodovar, J.: Building an SDN enterprise wlan based on virtual APS. IEEE Commun. Lett. 21(2), 374–377 (2016)

    Article  Google Scholar 

  24. Suresh, L., Schulz-Zander, J., Merz, R., Feldmann, A., Vazao, T.: “Towards programmable enterprise wlans with odin,” In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks. ACM, pp. 115–120 (2012)

  25. Riggio, R., Marina, M.K., Schulz-Zander, J., Kuklinski, S., Rasheed, T.: Programming abstractions for software-defined wireless networks. IEEE Trans. Netw. Serv. Manag. 12(2), 146–162 (2015)

    Article  Google Scholar 

  26. Coronado, E., Khan, S.N., Riggio, R.: 5G-empower: a software-defined networking platform for 5G radio access networks. IEEE Trans. Netw. Serv. Manag. 16(2), 715–728 (2019)

    Article  Google Scholar 

  27. Mukherjee, A., Cheng, J.F., Falahati, S., Koorapaty, H., Kang, D.H., Karaki, R., Falconetti, L., Larsson, D.: Licensed-Assisted Access LTE: coexistence with IEEE 802.11 and the evolution toward 5G. IEEE Commun. Mag. 54(6), 50–57 (2016)

    Article  Google Scholar 

  28. Laselva, D., Lopez-Perez, D., Rinne, M., Henttonen, T.: 3GPP LTE-WLAN aggregation technologies: functionalities and performance comparison. IEEE Commun. Mag. 56(3), 195–203 (2018)

    Article  Google Scholar 

  29. Abinader, F.M., Almeida, E.P., Chaves, F.S., Cavalcante, A.M., Vieira, R.D., Paiva, R.C., Sobrinho, A.M., Choudhury, S., Tuomaala, E., Doppler, K., Sousa, V.A.: Enabling the coexistence of LTE and Wi-Fi in unlicensed bands. IEEE Commun. Mag. 52(11), 54–61 (2014)

    Article  Google Scholar 

  30. Zhang, N., Zhang, S., Wu, S., Ren, J., Mark, J.W., Shen, X.: Beyond coexistence: traffic steering in LTE networks with unlicensed bands. IEEE Wirel. Commun. 23(6), 40–46 (2016)

    Article  Google Scholar 

  31. Wang, X., Mao, S., Gong, M .X.: A survey of lte wi-fi coexistence in unlicensed bands. GetMobile Mobile Comput. Commun. 20(3), 17–23 (2017)

    Article  Google Scholar 

  32. Sharma, P., Brahmakshatriya, A., Pasca S.T.V., Tamma, B.R., Franklin, A.: “LWIR: LTE-WLAN Integration at RLC Layer with Virtual WLAN Scheduler for Efficient Aggregation,” In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2016)

  33. Lin, Y.-B., Shih, Y.-J., Chao, P.-W.: Design and implementation of LTE RRM with switched LWA policies. IEEE Trans. Vehic. Technol. 67(2), 1053–1062 (2018)

    Article  Google Scholar 

  34. G. mobile Suppliers Association (GSA), “LTE in Unlicensed Spectrum: Trials, Deployments and Devices”. https://www.sata-sec.net/downloads/GSA/180117-GSA-Unlicensed-spectrum-report-Jan-2018.pdf. (2018)

  35. Networks, M.: “Truffle - Broadband Bonding Appliance.” https://www.mushroomnetworks.com/truffle/

  36. Peplink, “Multi-WAN Internet Load Balancer.” https://www.peplink.com/technology/internet-load-balancing/

  37. De Coninck, Q., Baerts, M., Hesmans, B., Bonaventure, O.: “A first analysis of multipath TCP on smartphones,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9631, no. September 2015, pp. 57–69 (2016)

  38. Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: “Experimental evaluation of multipath TCP schedulers,” In: Proceedings of the 2014 ACM SIGCOMM workshop on Capacity sharing workshop—CSWS ’14, pp. 27–32 (2014)

  39. Choi, K.W., Cho, Y.S., Lee, J.W., Cho, S.M., Choi, J., et al.: Optimal load balancing scheduler for MPTCP-based bandwidth aggregation in heterogeneous wireless environments. Comput. Commun. 112, 116–130 (2017)

    Article  Google Scholar 

  40. Kellokoski, J.: “Real-life multipath tcp based make-before-break vertical handover,” In: 2013 IEEE Symposium on Computers and Communications (ISCC). IEEE, pp. 000 252–000 256 (2013)

  41. Paasch, C., Detal, G., Duchene, F., Raiciu, C., Bonaventure, O.: “Exploring mobile/WiFi handover with multipath TCP,” In: Proceedings of the 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and Future Design. ACM, pp. 31–36 (2012)

  42. Khalili, R., Gast, N., Popovic, M., Le Boudec, J.-Y.: MPTCP is not pareto-optimal: performance issues and a possible solution. IEEE/ACM Trans. Netw. 21(5), 1651–1665 (2013)

    Article  Google Scholar 

  43. Rebecchi, F., De Amorim, M.D., Conan, V., Passarella, A., Bruno, R., Conti, M.: Data offloading techniques in cellular networks: a survey. IEEE Commun. Surv. Tutor. 17(2), 580–603 (2015)

    Article  Google Scholar 

  44. Tessares, “Hybrid Access Networks with MPTCP.” https://www.tessares.net/

  45. Hintjens, P.: ZeroMQ: messaging for many applications. O’Reilly Media Inc., Sebastopol (2013)

    Google Scholar 

  46. Lee, S.-Q., Kim, J.-U.: “Local breakout of mobile access network traffic by mobile edge computing,” In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 741–743 (2016)

  47. Giust, F., Verin, G., Antevski, K., Chou, J., Fang, Y., Featherstone, W., Fontes, F., Frydman, D., Li, A., Manzalini, A., et al.: MEC deployments in 4G and evolution towards 5G. ETSI White Paper 24, 1–24 (2018)

    Google Scholar 

  48. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017)

    Article  Google Scholar 

  49. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  50. Giust, F., Sciancalepore, V., Sabella, D., Filippou, M.C., Mangiante, S., Featherstone, W., Munaretto, D.: Multi-access edge computing: the driver behind the wheel of 5G-connected cars. IEEE Commun. Stand. Mag. 2(3), 66–73 (2018)

    Article  Google Scholar 

  51. G. T. 23.501, “Technical specification group services and system aspects: System architecture for the 5G system, stage 2 (release 15), v1.3.0,” (2017)

  52. Yu, Y.: “Sdn-based local breakout for mobile edge computing in radio access network,” In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018)

  53. Kekki, S., Featherstone, W., Fang, Y., Kuure, P., Li, A., Ranjan, A., Purkayastha, D., Jiangping, F., Frydman, D., Verin et al., G.: “Mec in 5g networks”. https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf. (2018)

  54. Khan, F.: “Mobile Internet from the Heavens,” arXiv preprintarXiv:1508.02383, p. 8, (2015)

  55. Xu, S., Wang, X.-W., Huang, M.: Software-defined next-generation satellite networks: architecture, challenges, and solutions. IEEE Access 4(c), 1–1 (2018)

    Article  Google Scholar 

  56. Chen, S., Hu, J., Shi, Y., Zhao, L.: LTE-V: a TD-LTE-based v2x solution for future vehicular network. IEEE Internet Things J. 3(6), 997–1005 (2016)

    Article  Google Scholar 

  57. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: “Internet of Things (IoT) communication protocols: Review,” In: 2017 8th International Conference on Information Technology (ICIT), pp. 685–690 (2017)

  58. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  59. Frangoudis, P.A., Polyzos, G.C., Kemerlis, V.P.: Wireless community networks: an alternative approach for nomadic broadband network access. IEEE Commun. Mag. 49(5), 206–213 (2011)

    Article  Google Scholar 

  60. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular router. ACM Trans. Comput. Syst. 18(3), 263–297 (2000)

    Article  Google Scholar 

  61. “Lede docs.” . https://lede.readthedocs.io/en/latest/

  62. Nikaein, N., Marina, M.K., Manickam, S., Dawson, A., Knopp, R., Bonnet, C.: Openairinterface: a flexible platform for 5G research. ACM SIGCOMM Comput. Commun. Rev. 44(5), 33–38 (2014)

    Article  Google Scholar 

  63. “Multipath tcp - linux kernel implementation.” https://multipath-tcp.org/pmwiki.php

  64. De Schepper, T., Latré, S., Famaey, J.: Flow management and load balancing in dynamic heterogeneous LANs. IEEE Trans. Netw. Serv. Manag. 15(2), 693–706 (2018)

    Article  Google Scholar 

  65. Lopez, I., Aguado, M., Pinedo, C., Jacob, E.: “Scada systems in the railway domain: enhancing reliability through redundant multipathtcp,” In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, pp. 2305–2310 (2015)

Download references

Acknowledgements

Patrick Bosch is funded by FWO, a fund for fundamental scientific research, and the Flemish Government, under Grant Number 1S56616N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom De Schepper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Schepper, T., Bosch, P., Struye, J. et al. ORCHESTRA: Supercharging Wireless Backhaul Networks Through Multi-technology Management. J Netw Syst Manage 28, 1187–1227 (2020). https://doi.org/10.1007/s10922-020-09528-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-020-09528-x

Keywords

Navigation