Skip to main content
Log in

In vitro efficacy of liver microenvironment in bone marrow mesenchymal stem cell differentiation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Bone marrow–derived mesenchymal stem cells (BM-MSCs) represent an interesting alternative to liver or hepatocyte transplantation to treat liver injuries. Many studies have reported that MSCs can treat several diseases, including liver damage, just by injection into the bloodstream, without evidence of differentiation. The improvements were attributed to the organotrophic factors, low immunogenicity, immunomodulatory, and anti-inflammatory effects of MSCs, rather than their differentiation. The aim of the present study was to answer the question of whether the presence of BM-MSCs in the hepatic microenvironment will lead to their differentiation to functional hepatocyte-like cells. The hepatic microenvironment was mimicked in vitro by culture for 21 d with liver extract. The resulted cells expressed marker genes of the hepatic lineage including AFP, CK18, and Hnf4a. Functionally, they were able to detoxify ammonia into urea, to store glycogen as observed by PAS staining, and to synthesize glucose from pyruvate/lactate mixture. Phenotypically, the expression of MSC surface markers CD90 and CD105 decreased by differentiation. This evidenced differentiation into hepatocyte-like cells was accompanied by a downregulation of the stem cell marker genes sox2 and Nanog and the cell cycle regulatory genes ANAPC2, CDC2, Cyclin A1, and ABL1. The present results suggest a clear differentiation of BM-MSCs into functional hepatocyte-like cells by the extracted liver microenvironment. This differentiation is confirmed by a decrease in the stemness and mitotic activities. Tracking transplanted BM-MSCs and proving their in vivo differentiation remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Ali G, Mohsin S, Khan M, Nasir GA, Shams S, Khan SN, Riazuddin S (2012) Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. J Transl Med 10(1):75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ammar HI (2015) Comparison of adipose tissue- and bone marrow- derived mesenchymal stem cells for alleviating doxorubicin-induced cardiac dysfunction in diabetic rats. Stem Cell Res Ther 6:1–16

    Google Scholar 

  • Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58(4):570–581

  • Bao J, Wu Q, Wang Y, Li Y, Li L, Chen F, Wu X, Xie M, Bu H (2016) Enhanced hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in spheroidal aggregate culture on a decellularized liver scaffold. Int J Mol Med 38(2):457–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bornstein R, Macias MI, de la Torre P, Grande J, Flores AI (2012) Human decidua-derived mesenchymal stromal cells differentiate into hepatic-like cells and form functional three-dimensional structures. Cytotherapy 14(10):1182–1192

    CAS  PubMed  Google Scholar 

  • Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by Sox 1–3 activity. Nat Neurosci 6(11):1162–1168

    CAS  PubMed  Google Scholar 

  • Campard D, Lysy PA, Najimi M, Sokal EM (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134(3):833–848

    CAS  PubMed  Google Scholar 

  • Casiraghi F, Remuzzi G, Abbate M, Perico N (2013) Multipotent mesenchymal stromal cell therapy and risk of malignancies. Stem Cell Rev 9(1):65–79

    CAS  Google Scholar 

  • Chamberlain J, Yamagami T, Colletti E, Theise ND, Desai J, Frias A, Pixley J, Zanjani ED, Porada CD, Almeida-Porada G (2007) Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology 46(6):1935–1945

    CAS  PubMed  Google Scholar 

  • Chu R, Lim H, Brumfield L, Liu H, Herring C, Ulintz P, Davison M (2004) Protein profiling of mouse livers with peroxisome proliferator-activated receptor α activation. Mol Cell Boil 24(14):6288–6297

    CAS  Google Scholar 

  • de Morais SB, da Silva LE, Lataro RM, Silva CA, de Oliveira LF, de Carvalho EE, Simões MV, da Silva ML, Fazan R Jr, Salgado HC (2015) Mesenchymal stem cells improve heart rate variability and baroreflex sensitivity in rats with chronic heart failure. Stem Cells Dev 24:2181–2192

    PubMed Central  Google Scholar 

  • Enserink JM, Kolodner RD (2010) An overview of Cdk1-controlled targets and processes. Cell Div 5(1):11

    PubMed  PubMed Central  Google Scholar 

  • Fan M, Wang X, Xu G, Yan Q, Huang W (2015) Bile acid signaling and liver regeneration. Biochim Biophys Acta 1849(2):196–200

    CAS  PubMed  Google Scholar 

  • Harada Y (2015) Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit. J Orthop Res 33:1466–1473

    CAS  PubMed  Google Scholar 

  • He H, Liu X, Peng L, Gao Z, Ye Y, Su Y, Zhao Q, Wang K, Gong Y, He F (2013) Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. Biomed Res Int 2013:406871

    PubMed  PubMed Central  Google Scholar 

  • Heilman DW, Green MR, Teodoro JG (2005) The anaphase promoting complex: a critical target for viral proteins and anticancer drugs. Cell Cycle 4(4):560–563

    CAS  PubMed  Google Scholar 

  • Hengstler JG, Brulport M, Schormann W, Bauer A, Hermes M, Nussler AK, Fandrich F, Ruhnke M, Ungefroren H, Griffin L, Bockamp E, Oesch F, von Mach MA (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol 1(1):61–74

    CAS  PubMed  Google Scholar 

  • Honmou O (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807

    PubMed  PubMed Central  Google Scholar 

  • Hui H, Ma W, Cui J, Gong M, Wang Y, Zhang Y, He T, Bi Y, He Y (2017) Periodic acid-Schiff staining method for function detection of liver cells is affected by 2% horse serum in induction medium. Mol Med Rep 16(6):8062–8068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyder A, Ehnert S, Fändrich F, Ungefroren H (2018) Transfection of peripheral blood monocytes with SOX2 enhances multipotency, proliferation, and redifferentiation into neohepatocytes and insulin-producing cells. Stem Cells Int 2018.4271875

  • Hyder A (2019) PGlyRP3 concerts with PPARγ to attenuate DSS-induced colitis in mice. Int Immunopharmacol 67:46–53

    CAS  PubMed  Google Scholar 

  • Hyder A, Ehnert S, Reiling N, Nüssler AK, Fändrich F, Ungefroren H (2012) EGF enhances the proliferation of human programmable cells of monocytic origin (PCMO) through activation of MEK/ERK signaling and improves the differentiation/function of PCMO-derived neohepatocyte-like cells. Cell Commun Signal 10:23–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyder A, Laue C, Schrezenmeir J (2010) Metabolic aspects of neonatal rat islet hypoxia tolerance. Transpl Int 23(1):80–89

  • Jang YO, Kim MY, Cho MY, Baik SK, Cho YZ, Kwon SO (2014) Effect of bone marrow-derived mesenchymal stem cells on hepatic fibrosis in a thioacetamide-induced cirrhotic rat model. BMC Gastroenterol (1):14–198

  • Kawamura M (2015) Xenotransplantation of bone marrow-derived human mesenchymal stem cell sheets attenuates left ventricular remodeling in a porcine ischemic cardiomyopathy model. Tissue Eng A 21:2272–2280

    CAS  Google Scholar 

  • Kedarisetty CK, Anand L, Khanam A, Kumar A, Rastogi A, Maiwall R, Sarin SK (2014) Growth factors enhance liver regeneration in acute-on-chronic liver failure. Hepatol Int 8(Suppl 2):514–525

    PubMed  Google Scholar 

  • Kerby A (2013) Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy 15:192–200

    CAS  PubMed  Google Scholar 

  • Keyszer G (2011) Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum 63:2540–2550

    PubMed  Google Scholar 

  • Li D, Wang P, Li Y, Xie Z, Wang L, Su H, Deng W, Wu Y, Shen H (2015) All-trans retinoic acid improves the effects of bone marrow-derived mesenchymal stem cells on the treatment of ankylosing spondylitis: an in vitro study. Stem Cells Int 2015:484528

  • Lin H, Xu R, Zhang Z, Chen L, Shi M, Wang FS (2011) Implications of the immunoregulatory functions of mesenchymal stem cells in the treatment of human liver diseases. Cell Mol Immunol 8(1):19–22

    CAS  PubMed  Google Scholar 

  • Liu R, Li X, Zhang Z, Zhou M, Sun Y, Su D, Feng X, Gao X, Shi S, Chen W, Sun L (2015a) Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Sci Rep 5:12777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang C, Wang X, Xu S (2015b) Therapeutic effects of transplantation of As-MiR-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease. Cell Physiol Biochem 37:321–330

    PubMed  Google Scholar 

  • Liu WH, Song FQ, Ren LN, Guo WQ, Wang T, Feng YX, Tang LJ, Li K (2015c) The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases. J Cell Mol Med 19(3):511–520

    CAS  PubMed  Google Scholar 

  • Meier RP, Müller YD, Morel P, Gonelle-Gispert C, Bühler LH (2013) Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res 11(3):1348–1364

    CAS  PubMed  Google Scholar 

  • Michalopoulos GK (2014) Advances in liver regeneration. Expert Rev Gastroenterol Hepatol 8:897–907

    CAS  PubMed  Google Scholar 

  • Nhung TH, Nam NH, Nguyen NTK, Nghia H, Van Thanh N, Ngoc PK, Van Pham P (2015) A comparison of the chemical and liver extract-induced hepatic differentiation of adipose derived stem cells. Vitro Cellular & Developmental Biology-Animal 51(10):1085–1092

    Google Scholar 

  • Okazaki T (2008) Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett 430:109–114

    CAS  PubMed  Google Scholar 

  • Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentís J, Sánchez A, García-Sancho J (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95:1535–1541

    CAS  PubMed  Google Scholar 

  • Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perán M, Marchal JA, López E, Jiménez-Navarro M, Boulaiz H, Rodríguez-Serrano F, Carrillo E, Sánchez-Espin G, de Teresa E, Tosh D, Aranega A (2010) Human cardiac tissue induces transdifferentiation of adult stem cells towards cardiomyocytes. Cytotherapy 12(3):332–337

    PubMed  Google Scholar 

  • Piryaei A, Valojerdi MR, Shahsavani M, Baharvand H (2011) Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev 7(1):103–118

    CAS  Google Scholar 

  • Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F (2019) Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther 10(1):98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roura S (2015) Postinfarction functional recovery driven by a three-dimensional engineered fibrin patch composed of human umbilical cord blood-derived mesenchymal stem cells. Stem Cells Transl Med 4:956–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvandi SS, Joghataei MT, Parivar K, Khosravi M, Sarveazad A, Sanadgol N (2015) In vitro differentiation of rat mesenchymal stem cells to hepatocyte lineage. Iran J Basic Med Sci 18(1):89–97

  • Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y (2005) Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 106(2):756–763

    CAS  PubMed  Google Scholar 

  • Schuppan D, Pinzani M (2012) Anti-fibrotic therapy: lost in translation? J. Hepatol. 56(Suppl. 1):S66–S74

    CAS  Google Scholar 

  • Stutchfield BM, Forbes SJ, Wigmore SJ (2010) Prospects for stem cell transplantation in the treatment of hepatic disease. Liver Transpl 16(7):827–836

    PubMed  Google Scholar 

  • Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X, Xu W, Zeng X, Hou Y, Gilkeson GS, Silver RM, Lu L, Shi S (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62:2467–2475

    CAS  PubMed  Google Scholar 

  • Ungefroren H, Hyder A, Hinz H, Groth S, Lange H, El-Sayed K, Ehnert S, Nüssler A, Fändrich F, Gieseler F (2015) Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-ß. PLoS One 10(2):e0118097

    PubMed  PubMed Central  Google Scholar 

  • Ungefroren H, Hyder A, Schulze M, Fawzy El-Sayed KM, Grage-Griebenow E, Nussler AK, Fändrich F (2016) Peripheral blood monocytes as adult stem cells: molecular characterization and improvements in culture conditions to enhance stem cell features and proliferative potential. Stem Cells Int 2016:7132751

    PubMed  Google Scholar 

  • Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155:62–70

    CAS  PubMed  Google Scholar 

  • Wang D, Zhang H, Cao M, Tang Y, Liang J, Feng X, Wang H, Hua B, Liu B, Sun L (2011) Efficacy of allogeneic mesenchymal stem cell transplantation in patients with drug-resistant polymyositis and dermatomyositis. Ann Rheum Dis 70:1285–1288

    PubMed  Google Scholar 

  • Wang SS, Hu SW, Zhang QH, Xia AX, Jiang ZX (2015) Mesenchymal stem cells stabilize atherosclerotic vulnerable plaque by anti-inflammatory properties. PLoS One 10:e0136026

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Wu H, Xue G, Hou Y (2012) Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment. Neural Regen Res 7(25):1925–1930

  • Xu J (2012) Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjogren syndrome. Blood 120:3142–3151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue G, Han X, Ma X, Wu H, Qin Y, Liu J, Hu Y, Hong Y, Hou Y (2016) Effect of microenvironment on differentiation of human umbilical cord mesenchymal stem cells into hepatocytes in vitro and in vivo. Biomed Res Int 2016:8916534

  • Yu J, Hao G, Wang D, Liu J, Dong X, Sun Y, Pan Q, Li Y, Shi X, Li L, Cao H (2017) Therapeutic effect and location of GFP-labeled placental mesenchymal stem cells on hepatic fibrosis in rats. Stem Cells Int 2017:1798260

    PubMed  PubMed Central  Google Scholar 

  • Zekri AR, Salama H, Medhat E, Musa S, Abdel-Haleem H, Ahmed OS, Khedr HA, Lotfy MM, Zachariah KS, Bahnassy A (2015) The impact of repeated autologous infusion of haematopoietic stem cells in patients with liver insufficiency. Stem Cell Res Ther 6(1):118

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chan C (2010) Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J Vis Exp 37:1852

    Google Scholar 

Download references

Acknowledgments

The work contains part of the MSc thesis of the first author. The authors are grateful to the Faculty of Science, Damietta University, for the support and laboratory facilities, and the Mansoura Experimental Research Center (MERC), Mansoura University for the excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Hyder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eissa, M., Elarabany, N. & Hyder, A. In vitro efficacy of liver microenvironment in bone marrow mesenchymal stem cell differentiation. In Vitro Cell.Dev.Biol.-Animal 56, 341–348 (2020). https://doi.org/10.1007/s11626-020-00436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00436-7

Keywords

Navigation