Skip to main content

Advertisement

Log in

Eldecalcitol (ED-71)-induced exosomal miR-6887-5p suppresses squamous cell carcinoma cell growth by targeting heparin-binding protein 17/fibroblast growth factor–binding protein-1 (HBp17/FGFBP-1)

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Heparin-binding protein 17/fibroblast growth factor–binding protein-1 (HBp17/FGFBP-1) was purified from A431 cell-conditioned media based on its capacity to bind to fibroblast growth factor 1 and 2 (FGF-1 and FGF-2). HBp17/FGFBP-1 has been observed to induce the tumorigenic potential of epithelial cells and is highly expressed in oral cancer cell lines and tissues. HBp17/FGFBP-1 is also recognized as a pro-angiogenic molecule as a consequence of its interaction with FGF-2. We have previously reported that Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, downregulated the expression of HBp17/FGFBP-1 and inhibited the proliferation of squamous cell carcinoma (SCC) cells in vitro and in vivo through NF-κb inhibition. To explore the possibility of microRNA (miRNA) control of HBp17/FGFBP-1, we analyzed exosomal miRNAs from medium conditioned by A431 cells treated with ED-71. Microarray analysis revealed that 12 exosomal miRNAs were upregulated in ED-71-treated A431 cells. Among them, miR-6887-5p was identified to have a predicted mRNA target matching the 3′ untranslated region (3′-UTR) of HBp17/FGFBP-1. The 3′-UTR of HBp17/FGFBP-1 was confirmed to be a direct target of miR-6887-5p in SCC/OSCC cells, as assessed with a luciferase reporter assay. Functional assessment revealed that overexpression of miR-6887-5p in SCC/OSCC cells inhibited cell proliferation and colony formation in vitro, and inhibited tumor growth in vivo compared with control. In conclusion, our present study supports a novel anti-cancer mechanism involving the regulation of HBp17/FGFBP-1 function by exosomal miR-6887-5p in SCC/OSCC cells, which has potential utility as a miRNA-based cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request.

References

  • Alvarez-Diaz S, Valle N, Ferrer-Mayorga G, Lombardia L, Herrera M, Dominguez O, Segura MF, Bonilla F, Hernando E, Munoz A (2012) MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum Mol Genet 21:2157–2165

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Andaloussi EL, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Beer HD, Bittner M, Niklaus G, Munding C, Max N, Goppelt A, Werner S (2005) The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. Oncogene 24:5269–5277

    Article  CAS  PubMed  Google Scholar 

  • Begum S, Zhang Y, Shintani T, Toratani S, Sato JD, Okamoto T (2007) Immunohistochemical expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) as an angiogenic factor in head and neck tumorigenesis. Oncol Rep 17:591–596

    CAS  PubMed  Google Scholar 

  • Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Czubayko F, Liaudet-Coopman ED, Aigner A, Tuveson AT, Berchem GJ, Wellstein A (1997) A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat Med 3:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  • Fabricant RN, De Larco JE, Todaro GJ (1977) Nerve growth factor receptors on human melanoma cells in culture. Proc Natl Acad Sci U S A 74:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore TD (1999) The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18:6842–6844

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci E, Liu Y, Willett WC (2006) Cancer incidence and mortality and vitamin D in black and white male health professionals. Cancer Epidemiol Biomark Prev 15:2467–2472

    Article  CAS  Google Scholar 

  • Gocek E, Wang X, Liu X, Liu CG, Studzinski GP (2011) MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res 71:6230–6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama S, Yoshino M, Eto K, Takahashi K, Ishihara J, Ono Y, Saito H, Kubodera N (2010) Synthesis and preliminary biological evaluation of 20-epi-eldecalcitol [20-epi-1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3: 20-epi-ED-71]. J Steroid Biochem Mol Biol 121:25–28

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  • Holick MF (2011) Vitamin D deficiency in 2010: health benefits of vitamin D and sunlight: a D-bate. Nat Rev Endocrinol 7:73–75

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Yang J, Zheng J, Hsueh C, Guo Y, Zhou L (2018) Characterization of selective exosomal microRNA expression profile derived from laryngeal squamous cell carcinoma detected by next generation sequencing. Oncol Rep 40:2584–2594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janjetovic Z, Tuckey RC, Nguyen MN, Thorpe EM Jr, Slominski AT (2010) 20,23-dihydroxyvitamin D3, novel P450scc product, stimulates differentiation and inhibits proliferation and NF-kappaB activity in human keratinocytes. J Cell Physiol 223:36–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehl T, Backes C, Kern F, Fehlmann T, Ludwig N, Meese E, Lenhof HP, Keller A (2017) About miRNAs, miRNA seeds, target genes and target pathways. Oncotarget 8:107167–107175

    Article  PubMed  PubMed Central  Google Scholar 

  • Kia V, Sharif Beigli M, Hosseini V, Koochaki A, Paryan M, Mohammadi-Yeganeh S (2018) Is miR-144 an effective inhibitor of PTEN mRNA: a controversy in breast cancer. In Vitro Cell Dev Biol Anim 54:621–628

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y (1978) Studies on lactate dehydrogenase isoenzymes in a cell line (Ca 9-22) derived from carcinoma of the gingiva (author's transl). Kokubyo Gakkai Zasshi 45:20–35

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Albers EM, Hill AF (2016) Extracellular vesicles: interneural shuttles of complex messages. Curr Opin Neurobiol 39:101–107

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li C, Qin F, Hu F, Xu H, Sun G, Han G, Wang T, Guo M (2018) Characterization and selective incorporation of small non-coding RNAs in non-small cell lung cancer extracellular vesicles. Cell Biosci 8:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Shi S, Chen J-H, Wu D, Kan M, Myoken Y, Okamoto T, Sato JD (2002) Human fibroblast growth factor-binding protein HBp17 enhances the tumorigenic potential of immortalized squamous epithelial cells. In: Shirahata S, Teruya K, Katakura Y (eds) Animal cell technology: basic & applied aspects: proceedings of the thirteenth annual meeting of the Japanese Association for Animal Cell Technology (JAACT), Fukuoka-Karatsu, November 16–21, 2000. Springer, Netherlands, pp 343–352

    Chapter  Google Scholar 

  • Liu Y, Hu Y, Ni D, Liu J, Xia H, Xu L, Zhou Q, Xie Y (2019) miR-194 regulates the proliferation and migration via targeting Hnf1beta in mouse metanephric mesenchyme cells. In Vitro Cell Dev Biol Anim 55:512–521

    Article  PubMed  CAS  Google Scholar 

  • Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Moller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031

    Article  PubMed  Google Scholar 

  • Maleklou N, Allameh A, Kazemi B (2016) Targeted delivery of vitamin D3-loaded nanoparticles to C6 glioma cell line increased resistance to doxorubicin, epirubicin, and docetaxel in vitro. In Vitro Cell Dev Biol Anim 52:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michimukai E, Kitamura N, Zhang Y, Wang H, Hiraishi Y, Sumi K, Hayashido Y, Toratani S, Okamoto T (2001) Mutations in the human homologue of the Drosophila segment polarity gene patched in oral squamous cell carcinoma cell lines. In Vitro Cell Dev Biol Anim 37:459–464

    Article  CAS  PubMed  Google Scholar 

  • Miyauchi S, Moroyama T, Kyoizumi S, Asakawa J, Okamoto T, Takada K (1988) Malignant tumor cell lines produce interleukin-1-like factor. In Vitro Cell Dev Biol 24:753–758

    Article  CAS  PubMed  Google Scholar 

  • Myoken Y, Myoken Y, Okamoto T, Kan M, Sato JD, Takada K (1994a) Release of fibroblast growth factor-1 by human squamous cell carcinoma correlates with autocrine cell growth. In Vitro Cell Dev Biol Anim 30a:790–795

    Article  CAS  PubMed  Google Scholar 

  • Myoken Y, Myoken Y, Okamoto T, Sato JD, Takada K (1994b) Immunocytochemical localization of fibroblast growth factor-1 (FGF-1) and FGF-2 in oral squamous cell carcinoma (SCC). J Oral Pathol Med 23:451–456

    Article  CAS  PubMed  Google Scholar 

  • Nishii Y, Okano T (2001) History of the development of new vitamin D analogs: studies on 22-oxacalcitriol (OCT) and 2beta-(3-hydroxypropoxy)calcitriol (ED-71). Steroids 66:137–146

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Tanaka Y, Kan M, Sakamoto A, Takada K, Sato JD (1996a) Expression of fibroblast growth factor binding protein HBp17 in normal and tumor cells. In Vitro Cell Dev Biol Anim 32:69–71

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Tani R, Yabumoto M, Sakamoto A, Takada K, Sato GH, Sato JD (1996b) Effects of insulin and transferrin on the generation of lymphokine-activated killer cells in serum-free medium. J Immunol Methods 195:7–14

    Article  CAS  PubMed  Google Scholar 

  • Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B (2013) MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology 145:437–446

    Article  CAS  PubMed  Google Scholar 

  • Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5:e13515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pucci F, Garris C, Lai CP, Newton A, Pfirschke C, Engblom C, Alvarez D, Sprachman M, Evavold C, Magnuson A, von Andrian UH, Glatz K, Breakefield XO, Mempel TR, Weissleder R, Pittet MJ (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosli SN, Shintani T, Hayashido Y, Toratani S, Usui E, Okamoto T (2013) 1alpha,25OH2D3 down-regulates HBp17/FGFBP-1 expression via NF-kappaB pathway. J Steroid Biochem Mol Biol 136:98–101

    Article  CAS  PubMed  Google Scholar 

  • Rosli SN, Shintani T, Toratani S, Usui E, Okamoto T (2014) 1alpha,25(OH)(2)D(3) inhibits FGF-2 release from oral squamous cell carcinoma cells through down-regulation of HBp17/FGFBP-1. In Vitro Cell Dev Biol Anim 50:802–806

    Article  CAS  PubMed  Google Scholar 

  • Sanford M, McCormack PL (2011) Eldecalcitol: a review of its use in the treatment of osteoporosis. Drugs 71:1755–1770

    Article  CAS  PubMed  Google Scholar 

  • Sato JD, Kawamoto T, Okamoto T (1987) Cholesterol requirement of P3-X63-Ag8 and X63-Ag8.653 mouse myeloma cells for growth in vitro. J Exp Med 165:1761–1766

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Rosli SNZ, Takatsu F, Choon YF, Hayashido Y, Toratani S, Usui E, Okamoto T (2016) Eldecalcitol (ED-71), an analog of 1alpha,25-dihydroxyvitamin D3 as a potential anti-cancer agent for oral squamous cell carcinomas. J Steroid Biochem Mol Biol 164:79–84

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Takatsu F, Rosli SNZ, Usui E, Hamada A, Sumi K, Hayashido Y, Toratani S, Okamoto T (2017) Eldecalcitol (ED-71), an analog of 1alpha,25(OH)2D3, inhibits the growth of squamous cell carcinoma (SCC) cells in vitro and in vivo by down-regulating expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) and FGF-2. In Vitro Cell Dev Biol Anim 53:810–817

    Article  CAS  PubMed  Google Scholar 

  • Sporn MB (2006) The early history of TGF-beta, and a brief glimpse of its future. Cytokine Growth Factor Rev 17:3–7

    Article  CAS  PubMed  Google Scholar 

  • Ting HJ, Messing J, Yasmin-Karim S, Lee YF (2013) Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J Biol Chem 288:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645:63–70

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Lv L, Li Y, Ji H (2018a) MicroRNA655 suppresses cell proliferation and invasion in oral squamous cell carcinoma by directly targeting metadherin and regulating the PTEN/AKT pathway. Mol Med Rep 18:3106–3114

    CAS  PubMed  Google Scholar 

  • Wang Z, Yan J, Zou T, Gao H (2018b) MicroRNA-1294 inhibited oral squamous cell carcinoma growth by targeting c-Myc. Oncol Lett 16:2243–2250

    PubMed  PubMed Central  Google Scholar 

  • Wu DQ, Kan MK, Sato GH, Okamoto T, Sato JD (1991) Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. J Biol Chem 266:16778–16785

    CAS  PubMed  Google Scholar 

  • Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T (2013) Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles 2

  • Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Emiko Usui for her valuable advice. We also thank Chugai Pharmaceutical Co. Ltd. for the generous gift of ED-71.

Funding

This research was supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology to T.O. (grant number: 15H05043) and T. S. (grant number: 16K11723). A part of this work was carried out at Natural Science Center for Basic Research and Development, Hiroshima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shintani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: J Denry Sato

Electronic supplementary material

ESM 1

(DOCX 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higaki, M., Shintani, T., Hamada, A. et al. Eldecalcitol (ED-71)-induced exosomal miR-6887-5p suppresses squamous cell carcinoma cell growth by targeting heparin-binding protein 17/fibroblast growth factor–binding protein-1 (HBp17/FGFBP-1). In Vitro Cell.Dev.Biol.-Animal 56, 222–233 (2020). https://doi.org/10.1007/s11626-020-00440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00440-x

Keywords

Navigation