Skip to main content
Log in

Hidden attractors: A new chaotic system without equilibria

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Localization of hidden attractors is one of the most challenging tasks in the nonlinear dynamics due to deficiency of properly justified analytical and numerical procedures. But understanding about the emergence of such unexpected occurrence of hidden attractors is desirable, because that can help to diminish the unexpected switch from one attractor to another undesired behavior. We propose a novel autonomous three-dimensional system exhibiting hidden attractor. These attractors can not be tracked using perpetual points. The reason behind this inefficiency is explained using theory of differential equations. Our system consists a slow manifold depicted through the time-series, although the system has no equilibrium points or such multiplicative parameters. We also discuss the behavior of the attractor using time-series analysis, bifurcation theory, Lyapunov spectrum and Kaplan-Yorke dimension. Moreover, the attractor no longer exists for a range of parameter values due to sudden change of strange attractors indicating a possible inverse crisis route to chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. May, G. Levin, S.A. Sugihara, Nature 451, 893 (2008).

    ADS  Google Scholar 

  2. A. Babloyantz, A. Destexhe, Proc. Natl. Acad. Sci. USA 83, 3513 (1986).

    ADS  Google Scholar 

  3. W. Yu, J. Cao, Chaos 16, 023119 (2006).

    ADS  MathSciNet  Google Scholar 

  4. U.S. Freitas, E.E.N. Macau, C. Grebogi, Phys. Rev. E 71, 047203 (2005).

    ADS  Google Scholar 

  5. S. Banerjee, D. Ghosh, A. Ray, A. Roy Chowdhury, Europhys. Lett. 81, 20006 (2008).

    ADS  Google Scholar 

  6. D. Ghosh, S. Banerjee, A.R. Chowdhury, Europhys. Lett. 80, 30006 (2007).

    ADS  Google Scholar 

  7. M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Rep. 541, 1 (2014).

    ADS  MathSciNet  Google Scholar 

  8. S.K. Bhowmick, D. Ghosh, Int. J. Mod. Phys. C 27, 1650006 (2016).

    ADS  Google Scholar 

  9. H. Jahanshahi, K. Rajagopal, A. Akgul, N.N. Sari, H. Namazi, S. Jafari, Int. J. Non Linear Mech. 107, 126 (2018).

    ADS  Google Scholar 

  10. R. Caponetto, G. Dongola, L. Fortuna, A. Gallo, Commun. Nonlinear Sci. Numer. Simul. 15, 997 (2010).

    ADS  MathSciNet  Google Scholar 

  11. A. Buscarino, L. Fortuna, M. Frasca, Physica D 238, 1917 (2009).

    ADS  Google Scholar 

  12. D. Ghosh, Europhys. Lett. 84, 40012 (2008).

    ADS  Google Scholar 

  13. V. Kohar, P. Ji, A. Choudhary, S. Sinha, J. Kurths, Phys. Rev. E 90, 022812 (2014).

    ADS  Google Scholar 

  14. S. Nag Chowdhury, D. Ghosh, Europhys. Lett. 125, 10011 (2019).

    ADS  Google Scholar 

  15. S.T. Kingni, S. Jafari, H. Simo, P. Woafo, Eur. Phys. J. Plus 129, 76 (2014).

    Google Scholar 

  16. S.K. Bhowmick, B.K. Bera, D. Ghosh, Commun. Nonlinear Sci. Numer. Simul. 22, 692 (2015).

    ADS  MathSciNet  Google Scholar 

  17. S. Kundu, B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 99, 022204 (2019).

    ADS  Google Scholar 

  18. Y. Maistrenko, S. Brezetsky, P. Jaros, R. Levchenko, T. Kapitaniak, Phys. Rev. E 95, 010203 (2017).

    ADS  Google Scholar 

  19. S. Kundu, S. Majhi, B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 97, 022201 (2018).

    ADS  MathSciNet  Google Scholar 

  20. Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, Europhys. Lett. 123, 48003 (2018).

    Google Scholar 

  21. C. Nicolis, V. Balakrishnan, G. Nicolis, Phys. Rev. Lett. 97, 210602 (2006).

    ADS  Google Scholar 

  22. S. Nag Chowdhury, S. Majhi, M. Ozer, D. Ghosh, M. Perc, New J. Phys. 21, 073048 (2019).

    ADS  MathSciNet  Google Scholar 

  23. A. Vicari, A. Ciraudo, C.D. Negro, A. Herault, L. Fortuna, Nat. Hazards 50, 539 (2009).

    Google Scholar 

  24. A. Ray, S. Rakshit, D. Ghosh, S.K. Dana, Chaos 29, 043131 (2019).

    ADS  MathSciNet  Google Scholar 

  25. D. Hilbert, Bull. Am. Math. Soc. 8, 437 (1901–1902).

    Google Scholar 

  26. H.E. Nusse, J.A. Yorke, E.J. Kostelich, Dynamics: Numerical explorations (Springer, New York, 1982).

  27. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

    ADS  Google Scholar 

  28. O.E. Rössler, Phys. Lett. A 57, 397 (1976).

    ADS  Google Scholar 

  29. T. Matsumoto, L.O. Chua, M. Komuro, IEEE Trans. Circuits Syst. 32, 797 (1985).

    Google Scholar 

  30. K.E. Chlouverakis, J.C. Sprott, Chaos Solitons Fractals 28, 739 (2006).

    ADS  MathSciNet  Google Scholar 

  31. P. Arena, S. Baglio, L. Fortuna, G. Manganaro, Electron. Lett. 31, 250 (1995).

    Google Scholar 

  32. G. Leonov, N. Kuznetsov, Int. J. Bifurc. Chaos 23, 1330002 (2013).

    Google Scholar 

  33. S. Jafari, J.C. Sprott, F. Nazarimehr, Eur. Phys. J. Special Topics 224, 1469 (2015).

    ADS  Google Scholar 

  34. Ü. Çavusşoǧlu, S. Panahi, A. Akgül, S. Jafari, S. Kaçar, Analog Integr. Circ. Sig. Process. 98, 85 (2019).

    Google Scholar 

  35. D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, A. Prasad, Phys. Rep. 637, 1 (2016).

    ADS  MathSciNet  Google Scholar 

  36. N.V. Kuznetsov, G.A. Leonov, V. Vagaitsev, IFAC Proc. 4, 29 (2010).

    Google Scholar 

  37. J. Sprott, Phys. Rev. E 50, R647 (1994).

    ADS  Google Scholar 

  38. S. Jafari, V.T. Pham, T. Kapitaniak, Int. J. Bifurc. Chaos 26, 1650031 (2016).

    Google Scholar 

  39. S. Jafari, J.C. Sprott, H. Golpayegani, Phys. Lett. A 377, 699 (2013).

    ADS  MathSciNet  Google Scholar 

  40. M. Molaie, S. Jafari, J.C. Sprott, H. Golpayegani, Int. J. Bifurc. Chaos 23, 1350188 (2013).

    Google Scholar 

  41. S.T. Kingni, S. Jafari, H. Simo, P. Woafo, Eur. Phys. J. Plus 129, 1 (2014).

    Google Scholar 

  42. C. Li, J.C. Sprott, W. Thio, J. Exp. Theory Phys. 118, 494 (2014).

    ADS  Google Scholar 

  43. S. Jafari, J.C. Sprott, Chaos Solitons Fractals 57, 79 (2013).

    ADS  MathSciNet  Google Scholar 

  44. S. Jafari, J.C. Sprott, M. Molaie, Int. J. Bifurc. Chaos 26, 1650098 (2016).

    Google Scholar 

  45. C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 48, 1507 (1982).

    ADS  MathSciNet  Google Scholar 

  46. R.M. May, Nature 261, 459 (1976).

    ADS  Google Scholar 

  47. E. Ott, Rev. Mod. Phys. 53, 655 (1981).

    ADS  Google Scholar 

  48. L. Arnold, Random dynamical systems (Springer Monographs in Mathematics, 2003).

  49. A. Prasad, Int. J. Bifurc. Chaos 25, 1530005 (2015).

    Google Scholar 

  50. P.H.O. Silva, L.G. Nardo, S.A.M. Martins, E.G. Nepomuceno, M. Perc, Eur. J. Phys. 39, 065105 (2018).

    Google Scholar 

  51. H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, Cambridge, England, 1997).

  52. M. Perc, Eur. J. Phys. 26, 579 (2005).

    Google Scholar 

  53. S. Kodba, M. Perc, M. Marhl, Eur. J. Phys. 26, 205 (2005).

    Google Scholar 

  54. A.J. Roberts, J. Aust. Math. Soc. B 27, 48 (1985).

    Google Scholar 

  55. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 28 (1985).

    Google Scholar 

  56. L.S. Young, Ergod. Theory. Dyn. Syst. 2, 109 (1982).

    Google Scholar 

  57. F. Ledrappier, Commun. Math. Phys. 81, 229 (1981).

    ADS  Google Scholar 

  58. H. Kantz, P. Grassberger, Phys. D 17, 75 (1985).

    MathSciNet  Google Scholar 

  59. C. Grebogi, E. Ott, J.A. Yorke, Physica D 7, 181 (1983).

    ADS  MathSciNet  Google Scholar 

  60. A. Hastings, K.C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y.C. Lai, A. Morozov, S. Petrovskii, K. Scranton, M.L. Zeeman, Science 361, 6406 (2018).

    Google Scholar 

  61. H.W. Yin, J.H. Dai, Phys. Rev. E 54, 371 (1996).

    ADS  Google Scholar 

  62. M. Dhamala, Y.C. Lai, Phys. Rev. E 59, 1646 (1999).

    ADS  Google Scholar 

  63. L. Zhu, A. Raghu, Y.C. Lai, Phys. Rev. Lett. 86, 4017 (2001).

    ADS  Google Scholar 

  64. G. Ahlers, R.W. Walden, Phys. Rev. Lett. 44, 445 (1980).

    ADS  Google Scholar 

  65. M. Woltering, M. Markus, Phys. Rev. Lett. 84, 630 (2000).

    ADS  Google Scholar 

  66. M. Dhamala, Y.C. Lai, Phys. Rev. E 60, 6176 (1999).

    ADS  Google Scholar 

  67. M. Dhamala, Y.C. Lai, E.J. Kostelich, Phys. Rev. E 61, 6485 (2000).

    ADS  Google Scholar 

  68. J.A. Yorke, E.D. Yorke, J. Stat. Phys. 21, 263 (1979).

    ADS  Google Scholar 

  69. J.M.T. Thompson, H.B. Stewart, Y. Ueda, Phys. Rev. E 49, 1019 (1994).

    ADS  MathSciNet  Google Scholar 

  70. C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. A 36, 5365 (1987).

    ADS  MathSciNet  Google Scholar 

  71. D.A. Russell, E. Ott, Phys. Fluids 24, 1976 (1981).

    ADS  MathSciNet  Google Scholar 

  72. B.A. Huberman, J.P. Crutchfield, Phys. Rev. Lett. 43, 1743 (1979).

    ADS  Google Scholar 

  73. J.A. Yorke, E.D. Yorke, J. Stat. Phys. 21, 263 (1979).

    ADS  Google Scholar 

  74. S. Smale, Bull. Am. Math. Soc. 73, 747 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibakar Ghosh.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag Chowdhury, S., Ghosh, D. Hidden attractors: A new chaotic system without equilibria. Eur. Phys. J. Spec. Top. 229, 1299–1308 (2020). https://doi.org/10.1140/epjst/e2020-900166-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900166-7

Navigation