Skip to main content
Log in

Inclusion complex of Callistemon viminalis essential oil prepared by kneading

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The essential oil of Callistemon viminalis (EOC) is rich in monoterpenes that present a wide range of biological properties, including antibacterial, antifungal, insecticidal, and antioxidant activities. However, applications of EOC are limited by its volatility and low solubility in water. The formation of inclusion complexes (ICs) with cyclodextrins (CDs) offers a way to improve the characteristics of unstable substances such as EOC. Therefore, the aim of this work was to characterize and analyze the composition of EOC, to complex it with β-CD using a kneading technique, and to perform controlled release assays. The formation of the IC was observed using infrared spectroscopy (IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Molecular dynamics was performed to analyse the interaction of β-CD with the majority compounds present in the EOC. The IR spectra and the results of the DSC and TGA calorimetric analyses showed that the physicochemical characteristics of the IC were different to those of the free EOC. The XRD and SEM analyses revealed structural and morphological changes after IC formation, hence confirming that complexation had occurred. In the case of the free EOC, 86% had been released after 2 days of dialysis, while the IC showed 65% release of the oil after 8 days, indicating that formation of the EOC/β-CD inclusion complex was effective in retarding the release of the EOC.Theoretical data showed that the most stable IC was obtained with α-terpineol, one of the major components of EOC. The results suggested that the activity of the IC should be evaluated in existing EOC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmad, K., Athar, F.: Phytochemistry and pharmacology of Callistemon viminalis (Myrtaceae): a review. J. Nat. Prod. 7, 1–10 (2017). https://doi.org/10.2174/2210315507666161216100323

    Article  CAS  Google Scholar 

  2. Barbieri, N., Sanchez-Contreras, A., Canto, A., Cauich-Rodriguez, J.V., Vargas-Coronado, R., Calvo-Irabien, L.M.: Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crops Prod. 121, 114–123 (2018). https://doi.org/10.1016/j.indcrop.2018.04.081

    Article  CAS  Google Scholar 

  3. Sales, T.A., Cardoso, M.G., Guimarães, L.G.L., Camargo, K.C., Rezende, D.A.C.S., Brandão, R.M., Souza, R.V., Ferreira, V.R.F., Marques, A.E., Magalhães, M.L., Nelson, D.L.: Essential oils from the leaves and flowers of callistemon viminalis: chemical characterization and evaluation of the insecticide and antifungal activities. Am. J. Plant Sci. 8, 2516–2529 (2017). https://doi.org/10.4236/ajps.2017.810171

    Article  CAS  Google Scholar 

  4. Pires, C.H., Paula, J.A.M., Tresvenzol, L.M.F., Ferri, P.H., Paula, J.R., Fiuza, T.S., Bara, M.T.S.: Composição química e atividade antimicrobiana dos óleos essenciais das folhas e flores de Callistemon viminalis (sol. ex Gaertn.) G. Don ex. Loudon (Myrtaceae). J. Basic Appl. Pharm. Sci. 34, 597–601 (2013)

    Google Scholar 

  5. Yadav, R., Tyagi, V., Tikar, S.T., Sharma, A.K., Mendki, M.J., Jain, A.K., Sukumaran, D.: Differential larval toxicity and oviposition altering activity of some indigenous plant extracts against dengue and chikungunya vector aedes albopictus. J. Arthropod Borne Dis. 8, 174–185 (2014)

    PubMed  PubMed Central  Google Scholar 

  6. Oyedeji, O.O., Lawal, O.A., Shode, F.O., Oyedeji, A.O.: Chemical composition and antibacterial activity of the essential oils of Callistemon citrinus and Callistemon viminalis from South Africa. Molecules 14, 1990–1998 (2009). https://doi.org/10.3390/molecules14061990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gong, L., Li, T., Chen, C., Duan, X., Yuan, Y., Zhang, D., Jiang, Y.: An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization. Food Chem. 196, 324–330 (2016). https://doi.org/10.1016/j.foodchem.2015.09.052

    Article  CAS  PubMed  Google Scholar 

  8. Torres, L.H., Carvalho, M.Z., Melo, P.S., Paula, E., Saczk, A.A., Pinto, L.M.A.: Characterization and cytotoxicity of a benzocaine inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 91, 9–15 (2018). https://doi.org/10.1007/s10847-018-0791-3

    Article  CAS  Google Scholar 

  9. Carvalho, L.B., Burusco, K.K., Jaime, C., Venancio, T., Carvalho, A.F.S., Murgas, L.D.S., Pinto, L.M.A.: Complexes between methyltestosterone and β-cyclodextrin for application in aquaculture production. Carbohydr. Polym. 79, 386–393 (2018). https://doi.org/10.1016/j.carbpol.2017.09.023

    Article  CAS  Google Scholar 

  10. Agência Nacional De Vigilância Sanitária (Anvisa): Farmacopéia Brasileira. Brazilian Pharmacopeae, 5th edn, pp. 198–199. Agência Nacional De Vigilância Sanitária (Anvisa), Brasilia (2010)

    Google Scholar 

  11. Adams, R.P.: Identification of essential oils components by gas chromatography/mass spectroscopy, 4th edn, p. 804. Allured, Carol Stream (2007)

    Google Scholar 

  12. Menezes, P.P., Serafini, M.R., Santana, B.V., Nunes, R.S., Quintans, L.J., Silva, G.F., Medeiros, I.A., Marchioro, M., Fraga, B.P., Santos, M.R.V., Araújo, A.A.S.: Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta 548, 45–50 (2012). https://doi.org/10.1016/j.tca.2012.08.023

    Article  CAS  Google Scholar 

  13. Macromodel: Version 10.5. Schrödinger, LLC, New York (2014)

    Google Scholar 

  14. AMBER* (1995). Version of the original AMBER program (Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., …, & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179) tailored for MACROMODEL 2012.

  15. Verlet, L.: Computer experiments on “classical fluids”. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). https://doi.org/10.1103/PhysRev.159.98

    Article  CAS  Google Scholar 

  16. Oliveira, C.M., Cardoso, M.G., Figueiredo, A.C.S., Carvalho, M.L.M., Miranda, C.A.S.F., Albuquerque, L.R.M., Nelson, D.L., Gomes, M.S., Silva, L.S., Santiago, J.A., Brandão, R.M.: Chemical composition and allelopathic activity of the essential oil from Callistemon viminalis (Myrtaceae) blossoms on lettuce (Lactuca sativa L.) seedlings. Am. J. Plant Sci. 5, 3551–3557 (2014). https://doi.org/10.4236/ajps.2014.524371

    Article  CAS  Google Scholar 

  17. Fall, R., Ngom, S., Sall, D., Sembene, M., Samb, A.: Chemical characterization of essential oil from the leaves of Callistemon viminalis (D.R.) and Melaleuca leucadendron (Linn.). Asian Pac. J. Trop. Biomed. 7, 347–351 (2017). https://doi.org/10.1016/j.apjtb.2017.01.004

    Article  Google Scholar 

  18. Gobbo-Neto, L., Lopes, N.P.: Medicinal plants: factors of influence on the content of secondary metabolites. Quím. Nova 30, 374–381 (2007). https://doi.org/10.1590/S0100-40422007000200026

    Article  CAS  Google Scholar 

  19. Dhakad, A.K., Pandey, V.V., Beg, S., Rawat, J.M.R., Singh, A.: Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review. J. Sci. Food Agric. 98, 833–848 (2018). https://doi.org/10.1002/jsfa.8600

    Article  CAS  PubMed  Google Scholar 

  20. Pavia, D.L., Lampman, G.M., Kriz, G.S.: Introduction to Spectroscopy. Thomson Learning, Inc., Boston (2001)

    Google Scholar 

  21. Kfoury, M., Auezova, L., Greige-Gerges, H., Ruellan, S., Fourmentin, S.: Cyclodextrin, an efficient tool for trans-anethole encapsulation: Chromatographic, spectroscopic, thermal and structural studies. Food Chem. 164, 454–461 (2014). https://doi.org/10.1016/j.foodchem.2014.05.052

    Article  CAS  PubMed  Google Scholar 

  22. Rakmai, J., Cheirsilp, B., Mejuto, J.C., Simal-Gándara, J., Torrado-Agrasar, A.: Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-β-cyclodextrin. Ind. Crops Prod. 111, 219–225 (2018). https://doi.org/10.1016/j.indcrop.2017.10.027

    Article  CAS  Google Scholar 

  23. Miranda, J.C., Martins, T.E.A., Veiga, F., Ferraz, H.G.: Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. J. Pharm. Sci Braz. (2011). https://doi.org/10.1590/S1984-82502011000400003

    Article  Google Scholar 

  24. Songkro, S., Hayook, N., Jaisawang, J., Maneenuan, D., Chuchome, T., Kaewnopparat, N.: Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem. 72, 339–355 (2012). https://doi.org/10.1007/s10847-011-9985-7

    Article  CAS  Google Scholar 

  25. Wang, J., Cao, Y., Sun, B., Wang, C.: Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 127, 1680–1685 (2011). https://doi.org/10.1016/j.foodchem.2011.02.036

    Article  CAS  Google Scholar 

  26. Mohamad, S., Surikumaran, H., Raoov, M., Marimuthu, T., Chandrasekaram, K., Subramaniam, P.: Conventional study on novel dicationic ionic liquid inclusion with β-cyclodextrin. Int. J. Mol. Sci. 12, 6329–6345 (2011). https://doi.org/10.3390/ijms12096329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abarca, R., Rodríguez, F.J., Galotto, A.G.M.J., Bruna, J.E.: Characterization of β-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 196, 968–975 (2016). https://doi.org/10.1016/j.foodchem.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  28. Shrestha, M., Ho, T.M., Bhandari, B.R.: Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder. Food Chem. 221, 474–1483 (2017). https://doi.org/10.1016/j.foodchem.2016.11.003

    Article  CAS  Google Scholar 

  29. Santos, E.H., Kamimura, J.A., Hill, L.E., Gomes, C.L.: Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. Food Sci. Technol. 60, 583–592 (2015). https://doi.org/10.1016/j.lwt.2014.08.046

    Article  CAS  Google Scholar 

  30. Badu, G.D.K., Singh, B.: Simulation of Eucalyptus cinerea oil distillation: a study on optimization of 1,8-cineole production. Biochem. Eng. J. 44, 226–231 (2009). https://doi.org/10.1016/j.bej.2008.12.012

    Article  CAS  Google Scholar 

  31. Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J. Pharm. Biomed. Anal. 113, 226–238 (2015). https://doi.org/10.1016/j.jpba.2015.01.058

    Article  CAS  PubMed  Google Scholar 

  32. Guimarães, A.G., Oliveira, M.A., Alves, R.S., Menezes, P.P., Serafini, M.R., Araújo, A.A.S., Daniel Pereira Bezerra, D.P., Quintans-Júnior, L.J.: Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem. Biol. Interact. 227, 69–76 (2015). https://doi.org/10.1016/j.cbi.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  33. Menezes, P.P., Serafini, M.R., Carvalho, Y.M.B.G., Santana, D.V.S., Lima, B.S., Quintans-Júnior, L.J., Marreto, R.N., Aquino, T.M., Sabino, A.R., Scotti, L., Scotti, M.T., Grangeiro-Júnior, S., Araújo, A.A.S.: Kinetic and physical-chemical study of the inclusion complex of β-cyclodextrin containing carvacrol. J. Mol. Struct. 1125, 323–330 (2016). https://doi.org/10.1016/j.molstruc.2016.06.062

    Article  CAS  Google Scholar 

  34. Andrade, T.A., Freitas, T.S., Araújo, F.O., Menezes, P.P., Dória, G.A.A., Rabelo, A.S., Quintans-Júnior, L.J., Santos, M.R.V., Bezerra, D.P., Serafini, M.R., Menezes, R.A.I., Nunes, P.S., Araújo, A.A.S., Costa, M.S., Campina, F.F., Santos, A.T.L., Silva, A.R.P., Coutinho, H.D.M.: Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin. Biomed. Pharmacother. 89, 201–207 (2017). https://doi.org/10.1016/j.biopha.2017.01.158

    Article  CAS  PubMed  Google Scholar 

  35. Kayaci, F., Sen, H., Durgun, E., Uyar, T.: Functional electrospun polymeric nanofibers incorporating geraniol-cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res. Int. 62, 424–431 (2014). https://doi.org/10.1016/j.foodres.2014.03.033

    Article  CAS  Google Scholar 

  36. Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Junior, S.O., de Paula, E.: Physico-chemical characterization of benzocaine-beta-cyclodextrin inclusion complexes. J. Pharm. Biomed. Anal. 9, 956–963 (2005)

    Article  Google Scholar 

  37. De Jesus, M.B., Pinto, L.M.A., Fraceto, L.F., Magalhaes, L.A., Zanotti-Magalhaes, E.M., de Paula, E.: Improvement of the oral praziquantel anthelmintic effect by cyclodextrin complexation. J. Drug Target. 18, 21–26 (2010). https://doi.org/10.3109/10611860903131677

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, W., Li, X., Yu, T., Yuan, L., Rao, G., Li, D., Mu, C.: Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin. Food Res. Int. 74, 55–62 (2015). https://doi.org/10.1016/j.foodres.2015.04.02

    Article  CAS  PubMed  Google Scholar 

  39. Yang, L., Li, C., Yuan, T., Tan, T., Zhang, L.: Preparation of highly pure daidzin on oligo-β-cyclodextrin-Sepharose HP and investigation of chromatographic behavior of isoflavones by molecular docking. J. Chromatogr. B 879, 1773–1780 (2011). https://doi.org/10.1016/j.jchromb.2011.04.022

    Article  CAS  Google Scholar 

  40. Xiong, X., Zhao, X., Song, Z.: Exploring host–guest interactions of sulfobutylether-β-cyclodextrin and phenolic acids 514 by chemiluminescence and site-directed molecular docking. Anal. Biochem. 460, 54–60 (2014). https://doi.org/10.1016/j.ab.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  41. Kfoury, M., Balan, R., Landy, D., Nistor, D., Fourmentin, S.: Investigation of the complexation of essential oil components with cyclodextrins. Supramol. Chem. 27(620–628), 2015 (2015). https://doi.org/10.1080/10610278.2015.1051977

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support for this research provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, L.B.C. thanks to Process: CBB-BDS-00284-15), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Centro de Análise e Prospecção Química (CAPQ), Laboratório de Produtos Naturais e Sintéticos, and Universidade Federal de Lavras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana de Matos Alves Pinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L.N.S.B., Venceslau, A.d.F.A., Carvalho, L.B. et al. Inclusion complex of Callistemon viminalis essential oil prepared by kneading. J Incl Phenom Macrocycl Chem 97, 109–119 (2020). https://doi.org/10.1007/s10847-020-00989-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00989-w

Keywords

Navigation