Skip to main content
Log in

A non-local fractional stress–strain gradient theory

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A generalized non-local stress–strain gradient theory is presented using fractional calculus. The proposed theory includes as a special case: the classical theory; the non-local strain gradient theory; the Eringen non-local theory; the strain gradient theory; the general Eringen non-local theory; and the general strain gradient theory. This new formulation is therefore more comprehensive and more complete to model physical phenomena. Its application has been shown in free vibration, buckling and bending of simply supported (S–S) nano-beams. The non-linear governing equations have been solved by the Galerkin method. Furthermore the effects of different (additional) model parameters like: the length scale parameter; the non-local parameter; and different orders (integer and non-integer) of strain and stress gradients have been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal, R., Peng, B., Gdoutos, E.E., Espinosa, H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8(11), 3668–3674 (2008)

    Google Scholar 

  • Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., Ali Khan, R.: Numerical multistep approach for solving fractional partial differential equations. Int. J. Comput. Methods 14(03), 1750029 (2017)

    MathSciNet  MATH  Google Scholar 

  • Aydogdu, M.: A general non-local beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41(9), 1651–1655 (2009)

    Google Scholar 

  • Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25–31 (2013)

    MathSciNet  MATH  Google Scholar 

  • Cao, G., Chen, X.: Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Phys. Rev. B 76(16), 165407 (2007)

    Google Scholar 

  • Carpinteri, A., Cornetti, P., Sapora, A.: Nonlocal elasticity: an approach based on fractional calculus. Meccanica 49(11), 2551–2569 (2014)

    MathSciNet  MATH  Google Scholar 

  • Challamel, N., Zorica, D., Atanacković, T.M., Spasić, D.T.: On the fractional generalization of Eringenʼs non-local elasticity for wave propagation. Comptes Rendus Mécanique 341(3), 298–303 (2013)

    Google Scholar 

  • D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math Appl. 66(7), 1245–1260 (2013)

    MathSciNet  MATH  Google Scholar 

  • da Graça Marcos, M., Duarte, F.B., Machado, J.T.: Fractional dynamics in the trajectory control of redundant manipulators. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1836–1844 (2008)

    Google Scholar 

  • Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54(3), 643–653 (2006)

    Google Scholar 

  • Eringen, A.C.: Non-local polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    MATH  Google Scholar 

  • Eringen, A.C.: On differential equations of non-local elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Google Scholar 

  • Failla, G., Santini, A., Zingales, M.: A non-local two-dimensional foundation model. Arch. Appl. Mech. 83(2), 253–272 (2013)

    MATH  Google Scholar 

  • Faraji Oskouie, M., Ansari, R., Rouhi, H.: Bending analysis of functionally graded nanobeams based on the fractional non-local continuum theory by the variational legendre spectral collocation method. Meccanica 53(4), 1115–1130 (2018)

    MathSciNet  MATH  Google Scholar 

  • Hadjesfandiari, A. R., Dargush, G. F.: Foundations of consistent couple stress theory. arXiv preprint arXiv:1509.06299 (2015)

  • Hilfer, R.: Applications of fractional calculus in physics. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics. World Scientific Publishing, Singapore (2000)

    MATH  Google Scholar 

  • Jing, G.Y., Duan, H., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006)

    Google Scholar 

  • Khaniki, H.B., Hosseini-Hashemi, S., Nezamabadi, A.: Buckling analysis of nonuniform non-local strain gradient beams using generalized differential quadrature method. Alex. Eng. J. 57(3), 1361–1368 (2018)

    Google Scholar 

  • Lazopoulos, K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36(7), 777–783 (2009)

    MathSciNet  MATH  Google Scholar 

  • Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a non-local strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    MATH  Google Scholar 

  • Li, X., Bhushan, B., Takashima, K., Baek, C.W., Kim, Y.K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1–4), 481–494 (2003)

    Google Scholar 

  • Li, L., Li, X., Hu, Y.: Free vibration analysis of non-local strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)

    MATH  Google Scholar 

  • Liebold, C., Müller, W.H.: Applications of strain gradient theories to the size effect in submicro-structures incl. experimental analysis of elastic material parameters. Bull. TICMI 19(1), 45–55 (2015)

    MathSciNet  MATH  Google Scholar 

  • Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order non-local elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    MathSciNet  MATH  Google Scholar 

  • Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the non-local strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)

    MATH  Google Scholar 

  • Malara, G., Spanos, P.D.: Nonlinear random vibrations of plates endowed with fractional derivative elements. Probab. Eng. Mech. (2017). https://doi.org/10.1016/j.probengmech.2017.06.002

    Article  Google Scholar 

  • Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  • Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Google Scholar 

  • Olsson, P.A., Melin, S., Persson, C.: Atomistic simulations of tensile and bending properties of single-crystal bcc iron nano-beams. Phys. Rev. B 76(22), 224112 (2007)

    Google Scholar 

  • Rahimi, Z., Rezazadeh, G., Sumelka, W., Yang, X.J.: A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear non-local theory. Arch. Mech. 69(6), 413–433 (2017a)

    MathSciNet  MATH  Google Scholar 

  • Rahimi, Z., Sumelka, W., Yang, X.J.: Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Eng. Comput. 34(5), 1754–1770 (2017b)

    Google Scholar 

  • Rahimi, Z., Rezazadeh, G., Sadeghian, H.: Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory. Microsyst. Technol. 24(7), 2983–2989 (2018)

    Google Scholar 

  • Rahimi, Z., Sumelka, W., Shafiei, S.: The analysis of non-linear free vibration of FGM nano-beams based on the conformable fractional non-local model. Technical Sciences, Bulletin of the Polish Academy of Sciences (2018b)

  • Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithm 74(1), 223–245 (2017)

    MathSciNet  MATH  Google Scholar 

  • Rashidi, H., Rahimi, Z., Sumelka, W.: Effects of the slip boundary condition on dynamics and pull-in instability of carbon nanotubes conveying fluid. Microfluid. Nanofluid 22(11), 131 (2018)

    Google Scholar 

  • Ray, S. S., Atangana, A., Oukouomi Noutchie, S. C., Kurulay, M., Bildik, N., Kilicman, A.: Editorial: Fractional calculus and its applications in applied mathematics and other sciences. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/849395

  • Reddy, J.N.: Non-local theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)

    MATH  Google Scholar 

  • Sadeghian, H., Yang, C.K., Goosen, J.F.L., Van Der Drift, E., Bossche, A., French, P.J., Van Keulen, F.: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl. Phys. Lett. 94(22), 221903 (2009)

    Google Scholar 

  • Sapora, A., Cornetti, P., Chiaia, B., Lenzi, E.K., Evangelista, L.R.: Non-local diffusion in porous media: a spatial fractional approach. J. Eng. Mech. 143(5), D4016007 (2017)

    Google Scholar 

  • Secer, A., Alkan, S., Akinlar, M.A., Bayram, M.: Sinc–Galerkin method for approximate solutions of fractional order boundary value problems. Bound. Value Probl. 2013(1), 1 (2013)

    MathSciNet  MATH  Google Scholar 

  • Shah, F.A., Abass, R., Debnath, L.: Numerical solution of fractional differential equations using Haar wavelet operational matrix method. Int. J. Appl. Comput. Math. 3(3), 2423–2445 (2017)

    MathSciNet  MATH  Google Scholar 

  • Sumelka, W., Blaszczyk, T., Liebold, C.: Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur. J. Mech. A/Solids 54, 243–251 (2015)

    MathSciNet  MATH  Google Scholar 

  • Tarasov, V.E., Aifantis, E.C.: Toward fractional gradient elasticity. J. Mech. Behav. Mater. 23(1–2), 41–46 (2014)

    Google Scholar 

  • Tarasov, V.E., Aifantis, E.C.: Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 197–227 (2015)

    MathSciNet  MATH  Google Scholar 

  • Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)

    Google Scholar 

  • Yang, X.J.: Advanced Local Fractional Calculus and its Applications. World Science Publisher, New York (2012)

    Google Scholar 

  • Zhu, R., Pan, E., Chung, P.W., Cai, X., Liew, K.M., Buldum, A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21(7), 906 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, Z., Rezazadeh, G. & Sumelka, W. A non-local fractional stress–strain gradient theory. Int J Mech Mater Des 16, 265–278 (2020). https://doi.org/10.1007/s10999-019-09469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09469-7

Keywords

Navigation