Skip to main content
Log in

Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The fitness consequences of thermal plasticity of functional traits of insects, and the life stages at which these responses manifest, remain a subject of much debate. Here, we examine whether a short-term exposure to cold, medium or warm fluctuating temperature regimes during development (larval or adult) affects adult performance, thermal tolerance and fitness of the globally invasive harlequin ladybird Harmonia axyridis. We found plastic responses of a metric of heat stress resistance—critical thermal maximum—and of preferred body temperature after adult temperature exposure, but not in other traits measured. By contrast, exposure of larval stages resulted in plasticity of adult walking performance (height and breadth of the curve) but not tolerance or preference. We found distinct fitness responses between larval and adult treatments, but a composite fitness index revealed negligible effects on reproductive output. These results suggest that the drivers underlying the plasticity of temperature tolerance and temperature selection are different to those shaping the plasticity of walking speed. By testing specific predictions based on current theory of developmental and reversible plasticity, this study contributes novel data to plastic responses of behaviour, stress resistance and fitness to temperature exposure across life stages and thus, provides insights to the broader evolutionary and ecological significance of these responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets generated and analysed during the current study are available from the corresponding author on request.

References

  • Andersen JL, Manenti T, Sørensen JG, MacMillan HA, Loeschke V, Overgaard J (2015) How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct Ecol 29:55–65

    Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. Am Zool 32:194–216

    Google Scholar 

  • Basson CH, Clusella-Trullas S (2015) The behavior-physiology nexus: behavioral and physiological compensation are relied on to different extents between seasons. Physiol Biochem Zool 88:384–394

    PubMed  Google Scholar 

  • Beaman JE, White CR, Seebacher F (2016) Evolution of plasticity: mechanistic link between development and reversible acclimation. Trends Ecol Evol 31:237–249

    PubMed  Google Scholar 

  • Berkvens N, Bonte J, Berkvens D, Deforce K, Tirry L, De Clercq P (2008) Pollen as an alternative food for Harmonia axyridis. Biocontrol 53:201–210

    Google Scholar 

  • Bowler K (2005) Acclimation, heat shock and hardening. J Therm Biol 30:125–130

    Google Scholar 

  • Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol. Rev 83:339–355

    Google Scholar 

  • Brown PMJ, Thomas CE, Lombaert E, Jeffries DL, Estoup A, Lawson Handley L-J (2011) The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. Biocontrol 56:623–641

    Google Scholar 

  • Cavieres G, Bogdanovich JM, Bozinovic F (2016) Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures. J Evol Biol 29:1462–1468

    CAS  PubMed  Google Scholar 

  • Chevin L-M, Lande R (2015) Evolution of environmental cues for phenotypic plasticity. Evolution 69–10:2767–2775

    Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33:50–152

    Google Scholar 

  • Clusella-Trullas S, Chown SL (2014) Lizard thermal trait variation at multiple scales: a review. J Comput Physiol B 184:5–21

    Google Scholar 

  • Clusella-Trullas S, Terblanche JS, Chown SL (2010) Phenotypic plasticity of locomotion performance in the seed harvester Messor capensis (Formicidae). Physiol Biochem Zool 83:519–530

    PubMed  Google Scholar 

  • Cotto O, Sandell L, Chevin L-M, Ronce O (2019) Maladaptive shifts in life history in a changing environment. Am Nat 194 (in press)

  • Crawley M (2007) The R Book. Wiley, Hoboken

    Google Scholar 

  • Deere JA, Chown SL (2006) Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. Am Nat 168:630–644

    PubMed  Google Scholar 

  • Dillon ME, Liu R, Wang G, Huey RB (2012) Disentangling thermal preference and the thermal dependence of movement in ectotherms. J Therm Biol 37:631–639

    Google Scholar 

  • Fischer K, Eenhoorn E, Bot ANM, Brakefield PM, Zwaan BJ (2003) Cooler butterflies lay larger eggs: developmental plasticity versus acclimation. Proc B R Soc 270:2051–2056

    Google Scholar 

  • Fragata I, Lopes-Cunha M, Barbaro M, Kellen B, Lima M, Faria GS et al (2015) Keeping your options open: maintenance of thermal plasticity during adaptation to a stable environment. Evolution 70:195–206

    PubMed  Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B 365:547–556

    Google Scholar 

  • Gaston KJ, Chown SL (1999) Elevation and climatic tolerance: a test using dung beetles. Oikos 86:584–590

    Google Scholar 

  • Gerken AR, Eller OC, Hahn DA, Morgan TJ (2015) Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Proc Natl Acad Sci USA 112:4399–4404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Google Scholar 

  • Gibert P, Huey RB, Gilchrist GW (2001) Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age and geography. Evolution 55:205–209

    CAS  PubMed  Google Scholar 

  • Gilchrist GW (1995) Specialists and generalists in changing environments. 1. Fitness landscapes of thermal sensitivity. Am Nat 146:252–270

    Google Scholar 

  • Gilchrist GW (1996) Quantitative genetic analysis of thermal sensitivity in the locomotor performance curve of Aphidius ervi. Evolution 50:1560–1572

    PubMed  Google Scholar 

  • Gray EM (2013) Thermal acclimation in a complex life cycle: The effects of larval and adult thermal conditions on metabolic rate and heat resistance in Culex pipiens (Diptera: Culicidae). J Insect Physiol 59:1001–1007

    CAS  PubMed  Google Scholar 

  • Grill CP, Moore AJ, Brodie ED III (1997) The genetics of phenotypic plasticity in a colonizing population of the ladybird beetle, Harmonia axyridis. Heredity 78:261–269

    Google Scholar 

  • Hangartner S, Hoffmann A (2016) Evolutionary potential of multiple measures of upper thermal tolerance in Drosophila melanogaster. Funct Ecol 30:442–452

    Google Scholar 

  • Kawai A (1976) Analysis of the aggregation behaviour in the larvae of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) to prey colony. Res Populat Ecol 18:123–134

    Google Scholar 

  • Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA (2009) Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–1246

    CAS  PubMed  Google Scholar 

  • Kellermann V, Overgaard J, Loeschcke V, Kristensen TN, Hoffmann AA (2013) Trait associations across evolutionary time within a Drosophila phylogeny: correlated selection or genetic constraint? PLoS ONE 8:e72072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermann V, van Heerwaarden B, Sgrò CM (2017) How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc B R Soc 284:20170447

    Google Scholar 

  • Kingsolver JG, Woods HA, Buckley LB, Potter KA, MacLean HJ, Higgins JK (2011) Complex life cycles and the responses of insects to climate change. Integr Comput Biol 51:719–732

    Google Scholar 

  • Klepsatel P, Gáliková M, De Maio N, Huber CD, Schlӧtterer C, Flatt T (2013) Variation in thermal performance and reaction norms among populations of Drosophila melanogaster. Evolution 67:3573–3587

    PubMed  Google Scholar 

  • Knapp M (2014) Emergence of sexual size dimorphism and stage –specific effects of elevated temperature on growth date and development rate in Harmonia axyridis. Physiol Entomol. https://doi.org/10.1111/phen.12079

    Article  Google Scholar 

  • Knapp M, Nedvěd O (2013) Gender and timing during ontogeny matter: effects of a temporary high temperature on survival, body size and colouration in Harmonia axyridis. PLoS ONE 8:e74984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kooi RE, Brakefield PM (1999) The critical period for wing pattern induction in the polyphonic tropical butterfly Bicyclus anynana (Satyrinae). J Insect Physiol 45:201–212

    CAS  PubMed  Google Scholar 

  • Kristensen TN, Hoffmann AA, Overgaard J, Sørensen JG, Hallas R, Loeschcke V (2008) Costs and benefits of cold acclimation in field-released Drosophila. Proc Natl Acad Sci USA 105:216–221

    CAS  PubMed  Google Scholar 

  • LaMana ML, Miller JC (1998) Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environ Entomol 27:1001–1005

    Google Scholar 

  • Lachenicht MW, Clusella-Trullas S, Boardman L, Le Roux C, Terblanche JS (2010) Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus (Orthoptera: Gryllidae). J Insect Physiol 56:822–830

    CAS  PubMed  Google Scholar 

  • Lanzoni A, Accinelli G, Bazzocchi GG, Burgio G (2004) Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). J Appl Entomol 128:298–306

    Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical expectations. Princeton University Press, Princeton

    Google Scholar 

  • Liefting M, van Grunsven RHA, Morrisey MB, Timmermans MJTN, Ellers J (2015) Interplay of robustness and plasticity of life-history traits drives ecotypic differentiation in thermally distinct habitats. J Evol Biol 28:1057–1066

    CAS  PubMed  Google Scholar 

  • Lockwood BL, Gupta T, Scavotto R (2018) Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster. J Evol Biol 31:323–331

    CAS  PubMed  Google Scholar 

  • Lombaert E, Estoup A, Facon B, Joubard B, Gregoire J-C, Jannin A, Blin A, Guillemaud T (2014) Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia axyridis. J Evol Biol 27:508–517

    CAS  PubMed  Google Scholar 

  • Martin TL, Huey RB (2008) Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:E102–E118

    PubMed  Google Scholar 

  • Maino JL, Kong JD, Hoffmann AA, Barton MG, Kearney MR (2016) Mechanistic models for predicting insect responses to climate change. Curr Opin Insect Sci 17:81–86

    PubMed  Google Scholar 

  • McCue MD, Boardman L, Clusella-Trullas S, Kleynhans E, Terblanche JS (2016) The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector. J Exp Biol 219:1893–1902

    PubMed  Google Scholar 

  • Michie LJ, Mallard F, Majerus MEN, Jiggins FM (2010) Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J Evol Biol 23:1699–1707

    CAS  PubMed  Google Scholar 

  • Mutamiswa R, Machekano H, Chidawanyika F, Nyamukondiwa C (2019) Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). J Therm Biol 79:85–94

    PubMed  Google Scholar 

  • Nougué O, Svendsen N, Jabbour-Zahad R, Lenomand T, Chevin L-M (2016) The ontogeny of tolerance curves: habitat quality vs. acclimation in a stressful environment. J Anim Ecol 85:1625–1635

    PubMed  PubMed Central  Google Scholar 

  • Nyamukondiwa C, Terblanche JS (2010) Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short-term responses to temperature. Physiol Entomol 35:255–264

    Google Scholar 

  • Overgaard J, Kearney M, Hoffmann AA (2014) Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob Chang Biol 20:1738–1750

    PubMed  Google Scholar 

  • Osawa N (2000) Population field studies on the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: coccinnellidae): resource tracking and population characteristics. Popul Ecol 42:115–127

    Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233

    Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    PubMed  Google Scholar 

  • Porcelli D, Gaston KJ, Butlin RK, Snook RR (2017) Local adaptation of reproductive performance during thermal stress. J Evol Biol 30:422–429

    CAS  PubMed  Google Scholar 

  • Potter KA, Davidowitz G, Woods HA (2011) Cross-stage consequences of egg temperature in the insect Manduca sexta. Funct Ecol 25:548–556

    Google Scholar 

  • Purse BV, Comont R, Butler A, Brown PMJ, Kessel C, Roy HE (2015) Landscape and climate determine patterns of spread for all colour morphs of the alien ladybird Harmonia axyridis. J Biogeogr 42:575–588

    Google Scholar 

  • Raak-van den Berg CL, Hemerik L, van der Werf W, de Jong PW, van Lenteren JC (2017) Life history of the harlequin ladybird, Harmonia axyridis: a global meta-analysis. Biocontrol 62:283–296

    Google Scholar 

  • Radchuk V, Turlure C, Schtickzelle N (2013) Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim Ecol 82:275–285

    PubMed  Google Scholar 

  • Rako L, Hoffmann AA (2006) Complexity of the cold acclimation response in Drosophila melanogaster. J Insect Physiol 52:94–104

    CAS  PubMed  Google Scholar 

  • Roy HE, Brown PMJ, Adriaens T, Berkvens N, Borges I, Clusella-Trullas S et al (2016) The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biol Invasions 18:997–1044

    Google Scholar 

  • Seebacher S (2005) A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility? J Comput Physiol B 175:453–461

    Google Scholar 

  • Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comput Biol 51:691–702

    Google Scholar 

  • Sgrò CM, Terblanche JS, Hoffmann AA (2016) What can plasticity contribute to insect responses to climate change? Annu Rev Entomol 61:433–451

    PubMed  Google Scholar 

  • Sinclair BJ, Williams CW, Terblanche JS (2012) Variation in thermal performance among insect populations. Physiol Biochem Zool 85:594–606

    PubMed  Google Scholar 

  • Slotsbo S, Schou MF, Kristensen TN, Loeschcke V, Sørensen JG (2016) Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance. J Exp Biol 219:2726–2732

    PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Overgaard J (2016) Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? Curr Opin Insect Sci 17:98–104

    PubMed  Google Scholar 

  • Terblanche JS, Chown SL (2006) The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). J Exp Biol 209:1064–1073

    PubMed  Google Scholar 

  • Uno H, Stillman JH (2020) Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect. Oecologia. https://doi.org/10.1007/s00442-020-04605-z

    Article  PubMed  Google Scholar 

  • Van Dyck H, Bonte D, Puls R, Gotthard K, Maes D (2015) The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124:54–61

    Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522

    PubMed  Google Scholar 

  • Weinig C, Delph L (2001) Phenotypic plasticity early in life constrains developmental responses later. Evolution 55:930–936

    CAS  PubMed  Google Scholar 

  • Weldon CW, Terblanche JS, Chown SL (2011) Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J Therm Biol 36:479–485

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Westneat DF, Potts LJ, Sasser KL, Shaffer JD (2019) Causes and consequences of phenotypic plasticity in complex environments. Trends Ecol Evol 34:555–568

    PubMed  Google Scholar 

  • Wilson RS, Franklin CE (2002) Testing the beneficial acclimation hypothesis. Trends Ecol Evol 17:66–70

    Google Scholar 

  • Zhang S, Cao Z, Wang Q, Zhang F, Liu T-X (2014) Exposing eggs to high temperatures affects the development, survival and reproduction of Harmonia axyridis. J Therm Biol 39:40–44

    CAS  Google Scholar 

  • Zhang W, Rudolf VHW, Ma C-S (2015) Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia 179:947–957

    PubMed  Google Scholar 

  • Zeilstra I, Fischer K (2005) Cold tolerance in relation to developmental and adult temperature in a butterfly. Physiol Entomol 30:92–95

    Google Scholar 

Download references

Acknowledgements

We are grateful to E. Nortje, I.A. Minnaar and N. Mbongwa for laboratory assistance and the anonymous referees and Associate Editor for their helpful comments on an earlier version of the manuscript. The first author was supported by a Masters bursary from the DST – NRF Centre of Excellence for Invasion Biology, Stellenbosch University. Project funding was obtained from the DST – NRF Centre of Excellence for Invasion Biology.

Author information

Authors and Affiliations

Authors

Contributions

SCT conceived the study and all authors refined experimental protocols; RS ran experiments and gathered data; RS and SCT performed analyses; all authors contributed to writing and gave final approval.

Corresponding author

Correspondence to Susana Clusella-Trullas.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinner, R., Terblanche, J.S. & Clusella-Trullas, S. Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis. Evol Ecol 34, 555–572 (2020). https://doi.org/10.1007/s10682-020-10045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-020-10045-1

Keywords

Navigation