Skip to main content

Advertisement

Log in

High Arctic Vegetation Change Mediated by Hydrological Conditions

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Increasing air temperatures are driving widespread changes to Arctic vegetation. In the high Arctic, these changes are patchy and the causes of heterogeneity are not well understood. In this study, we explore the determinants of high Arctic vegetation change over the last three decades on Banks Island, Northwest Territories. We used Landsat imagery (1984–2014) to map long-term trends in vegetation productivity and regional spatial data to investigate the relationships between trends in productivity and terrain position. Field sampling investigated vegetation community composition in different habitat types. Our analysis shows that vegetation productivity changes are substantial on Banks Island, where productivity has increased across about 80% of the study area. Rising productivity levels can be attributed to increasing biomass of the plant communities in both upland and lowland habitats. Our analysis also shows that the magnitude of greening is mediated by terrain characteristics related to soil moisture. Shifts in tundra vegetation will impact wildlife habitat quality, surface energy balance, permafrost dynamics, and the carbon cycle; additional research is needed to explore the effects of more productive vegetation communities on these processes in the high Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abraham KF. 2014. Goose foraging in arctic habitats with a protocol for a rapid ground based assessment of its impacts on northern plant communities. Canadian Wildlife Service Internal Report, Winnipeg, MB, Canada.

  • Atkinson DM, Treitz P. 2013. Modeling biophysical variables across an Arctic latitudinal gradient using high spatial resolution remote sensing data. Arct Antarct Alp Res 45:161–78.

    Google Scholar 

  • Barrett PE, Teeri JA. 1973. Vascular plants of the Truelove Inlet region, Devon Island. Arctic 23:58–67.

    Google Scholar 

  • Becker MS, Davies TJ, Pollard WH. 2016. Ground ice melt in the high Arctic leads to greater ecological heterogeneity. J Ecol 104:114–24.

    Google Scholar 

  • Best DJ, Roberts DE. 1975. Algorithm AS 89: the upper tail probabilities of Spearman’s ρ. Applied Statistics 24:377–9.

    Google Scholar 

  • Billings WD, Mooney HA. 1968. The ecology of Arctic and alpine plants. Biol Rev Camb Philos 43:481–529.

    Google Scholar 

  • Bjorkman AD, Criado MG, Myers-Smith IH, Ravolainen V, Jonsdottir IS, Westergaard KB, Lawler JP, Aronsson M, Bennett B, Gardfjell H, Heiomarsson S, Stewart L, Normand S. 2019. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 0044–7447:1–15.

    Google Scholar 

  • Bliss LC. 1977. Truelove Lowland, Devon Island, Canada: A high Arctic ecosystem. Edmonton, Alberta, Canada: The University of Alberta Press.

    Google Scholar 

  • Bronaugh D, Werner A. 2019. Zyp: Zhang + Yue-Pilon trends package. R package version 0.10-1.1. https://CRAN.R-project.org/package=zyp.

  • Cameron EA, Lantz TC. 2016. Drivers of tall shrub proliferation adjacent to the Dempster Highway, Northwest Territories Canada. Environ Res Lett 11:045006.

    Google Scholar 

  • Campbell TKF, Lantz TC, Fraser RH. 2018. Impacts of climate change and intensive lesser snow goose (Chen caerulescens caerulescens) activity on surface water in high Arctic pond complexes. Remote Sens 10:1892.

    Google Scholar 

  • CAVM Team. 2003. Circumpolar Arctic vegetation map. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1, U.S. Fish and Wildlife Service, Anchorage Alaska.

  • Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM + , and EO-1 ALI sensors. Remote Sens Environ 113:893–903.

    Google Scholar 

  • Chapin FSIII, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Response of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Google Scholar 

  • Chapin FSIII, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping C-L, Tape KD, Thompson CDC, Walker DA, Welker JM. 2005. Role of land-surface changes in Arctic summer warming. Science 310:657–60.

    CAS  PubMed  Google Scholar 

  • Cody WJ. 2000. Flora of the Yukon Territory. 2nd edn. Ottawa, Canada: NRC Research Press.

    Google Scholar 

  • Crist EP, Cicone RC. 1984. A physically-based transformation of thematic mapper data: the TM tasseled cap. IEEE T Geosci Remote 22:256–63.

    Google Scholar 

  • Ecosystem Classification Group. 2012. Ecological regions of the Northwest Territories—Southern Arctic. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada: 1–170.

  • Ecosystem Classification Group. 2013. Ecological regions of the Northwest Territories—Northern Arctic. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada: 1–157.

  • Edwards R, Treitz P. 2017. Vegetation greening trends at two sites in the Canadian Arctic: 1984–2015. Arctic, Antarctic, and Alpine Research 49:601–19.

    Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Horgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, Mercado-Daz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Þórhallsdóttir ÞE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren C-H, Walker X, Webber PJ, Welker JM, Wipf S. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–7.

    Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Fosaa AM, Gould WA, Hermanutz L, Hofgaard A, Jónsdóttir IS, Jorgenson JC, Lévesque E, Magnusson B, Molau U, Myers-Smith IH, Oberbauer SF, Rixen C, Tweedie CE, Walker MD. 2015. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc Nat Acad Sci USA 112:448–52.

    CAS  PubMed  Google Scholar 

  • Environment and Climate Change Canada. 2019. Climate data online. Available from http://climate.weather.gc.ca/climate_normals/ [6 August 2019].

  • Fisher JP, Estop-Aragones C, Thierry A, Charman DJ, Wolfe SA, Hartley IP, Murton JB, Williams M, Phoenix GK. 2016. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob Change Biol 22:3127–40.

    Google Scholar 

  • Fraser RH, Olthof I, Carriere M, Deschamps A, Pouliot D. 2011. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive. Environmental Research Letters 6:045502.

    Google Scholar 

  • Fraser RH, Lantz TC, Olthof I, Kokelj SV, Sims RA. 2014a. Warming-induced shrub expansion and lichen decline in the western Canadian Arctic. Ecosystems 17:1151–68.

    Google Scholar 

  • Fraser RH, Olthof I, Kokelj SV, Lantz TC, Lacelle D, Brooker A, Wolfe S, Schwarz S. 2014b. Detecting landscape changes in high latitude environments using Landsat trend analysis: 1 Visualization. Remote Sens 6:11533–57.

    Google Scholar 

  • Fraser RH, Kokelj SV, Lantz TC, McFarlane-Winchester M, Olthof I, Lacelle D. 2018. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens 10:954.

    Google Scholar 

  • French HM. 2016. The tundra and polar semi-desert landscapes of Banks Island and Prince Patrick Island, western Canadian Arctic. Cuadern Investig Geografica 42:321–40.

    Google Scholar 

  • Friedman J. 2001. Greedy function approximation: the gradient boosting machine. Ann Stat 29:1189–232.

    Google Scholar 

  • Frost GV, Epstein HE. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob Change Biol 20:1264–77.

    Google Scholar 

  • Gornall JL, Jonsdottir IS, Woodin SJ, Van der Wal R. 2007. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–41.

    CAS  PubMed  Google Scholar 

  • Goswami S, Gamon JA, Tweedie CE. 2011. Surface hydrology of an Arctic ecosystem: Multiscale analysis of a flooding and draining experiment using spectral reflectance. J Geophys Res 116:G00I07.

    Google Scholar 

  • Guay KC, Beck PA, Berner LT, Goetz SJ, Baccini A, Buermann W. 2014. Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob Change Biol 20:3147–58.

    Google Scholar 

  • Guo L, Cai Y, Belzile C, MacDonald RW. 2012. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry 107:187–206.

    CAS  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev Geophys 48:RG4004.

    Google Scholar 

  • Harding R, Kuhry P, Christensen TR, Sykes MT, Dankers R, van der Linden S. 2002. Climate feedbacks at the tundra-taiga interface. Ambio 47–55.

  • Hill GB, Henry GHR. 2011. Responses of high Arctic wet sedge tundra to climate warming since 1980. Glob Change Biol 17:276–87.

    Google Scholar 

  • Hines JE, Latour PB, Squires-Taylor C, Moore S. 2010. The effects on lowland habitat in the Banks Island Bird Sanctuary Number 1, Northwest Territories, by the growing colony of lesser snow geese (Chen caerulescens caerulescens). Environment Canada Occasional Paper 118:8–26.

    Google Scholar 

  • Hollander M, Wolfe DA. 1973. Nonparametric statistical methods. New York: John Wiley & Sons. pp 185–94.

    Google Scholar 

  • Huang C, Wylie B, Yang L, Homer C, Zylstra G. 2002. Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. Int J Remote Sens 23:1741–8.

    Google Scholar 

  • Hudson JMG, Henry GHR. 2009. Increased plant biomass in a high Arctic heath community from 1981 to 2008. Ecology 90:2657–63.

    CAS  PubMed  Google Scholar 

  • Huete A, Justice C, Liu H. 1994. Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ 49:224–34.

    Google Scholar 

  • Jefferies RL, Jensen A, Abraham KF. 1979. Vegetational development and the effect of geese on vegetation at La Perouse Bay, Manitoba. Can J Bot 57:1439–50.

    Google Scholar 

  • Jenson SK, Domingue JO. 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Rem S 54:1593–600.

    Google Scholar 

  • Johansson M, Callaghan TV, Bosio J, Akerman HJ, Jackowicz-Korczynski M, Christensen TR. 2013. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-Arctic Sweden. Environ Res Lett 8:035025.

    Google Scholar 

  • Ju J, Masek JG. 2016. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens Environ 176:1–16.

    Google Scholar 

  • Kaplan JO, New M. 2006. Arctic climate change with a 2 °C global warming: Timing, climate patterns and vegetation change. Climate Change 79:213–41.

    CAS  Google Scholar 

  • Kauth RJ, Thomas GS. 1976. The tasseled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symposia 159:41–51.

    Google Scholar 

  • Kendall MG, Stuart AS. 1967. Advanced theory of statistics. London, UK: Charles Griffin and Company. p 2.

    Google Scholar 

  • Kerbes RH, Meeres KM, Alisauskas RT. 2014. Surveys of nesting lesser snow geese and Ross’s geese in Arctic Canada, 2002–2009. Arctic Goose Joint Venture Special Publication, U.S. Fish and Wildlife Service, Washington, D.C. and Canadian Wildlife Service, Ottawa, Ontario 987-0-9881233-1-1.

  • Kokelj SV, Jorgenson MT. 2013. Advances in thermokarst research. Permafr Periglac Process 24:108–19.

    Google Scholar 

  • Kotanen PM, Jefferies RL. 1997. Long-term destruction of sub-arctic wetland vegetation by lesser snow geese. Ecoscience 4:179–82.

    Google Scholar 

  • Lantz TC, Gergel SE, Kokelj SV. 2010. Spatial heterogeneity in the shrub tundra ecotone in the Mackenzie Delta region, Northwest Territories: Implications for Arctic environmental change. Ecosystems 13:194–204.

    Google Scholar 

  • Lewkowicz AG, French HM. 1982. The hydrology of small runoff plots in an area of continuous permafrost, Banks Island, N.W.T.. Hydrology in Permafrost RegionsProc. 4th Can. Permafrost Conf. 151–162.

  • Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2:18–22.

    Google Scholar 

  • Lin DH, Johnson DR, Andresen C, Tweedie CE. 2011. High spatial resolution decade-time scale land cover change at multiple locations in the Beringian Arctic (1948–2000s). Environ Res Lett 7:025502.

    Google Scholar 

  • Loranty MM, Goetz SJ, Beck PSA. 2011. Tundra vegetation effects on pan-Arctic albedo. Environ Res Lett 6:024014.

    Google Scholar 

  • Martin AC, Jeffers ES, Petrokofsky G, Myers-Smith I, Macias-Fauria M. 2017. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environ Res Lett 12:085007.

    Google Scholar 

  • May JL, Parker T, Unger S, Oberbauer SF. 2018. Short term changes in moisture content drive strong changes in Normalized Difference Vegetation Index and gross primary productivity in four Arctic moss communities. Remote Sens Environ 212:114–20.

    Google Scholar 

  • Moffat ND, Lantz TC, Fraser RH, Olthof I. 2016. Recent vegetation change (1980–2013) in the tundra ecosystems of the Tuktoyaktuk Coastlands, NWT, Canada. Arct Antarct Alp Res 48:581–97.

    Google Scholar 

  • Mudryk LR, Derksen C, Howell S, Laliberte F, Thackeray C, Sospedra-Alfonso R, Vionnet V, Kushner PJ, Brown R. 2018. Canadian snow and sea ice: historical trends and projections. Cryosphere 12:1157–76.

    Google Scholar 

  • Myers-Smith IH, Hik DS, Kennedy C, Cooley D, Johnstone JF, Kenney AJ, Krebs CJ. 2011. Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio 40:610–23.

    PubMed  PubMed Central  Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Levesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jorgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–91.

    Google Scholar 

  • Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers-Blondin S, Beck PSA, Berner LT, Bhatt US, Bjorkman AD, Blok D, Bryn A, Christiansen CT, Cornelissen JHC, Cunliffe AM, Elmendorf SC, Forbes BC, Goetz SJ, Hollister RD, de Jong R, Loranty MM, Macias-Fauria M, Maseyk K, Normand S, Olofsson J, Parker TC, Parmentier FJW, Post E, Schaepman-Strub G, Stordal F, Sullivan PF, Thomas HJD, Tommervik H, Treharne R, Tweedie CE, Walker DA, Wilmking M, Wipf S. 2020. Complexity revealed in the greening of the Arctic. Nat Clim Change 10:106–17.

    Google Scholar 

  • NASA GISS. 2014. Surface temperature analysis: Global maps from GHCN v3 data. Available from https://data.giss.nasa.gov/gistemp/maps/ [19 December 2019].

  • Naito AT, Cairns DM. 2011. Relationships between Arctic shrub dynamics and topographic derived hydrologic characteristics. Environ Res Lett 6:045506.

    Google Scholar 

  • Niittynen P, Luoto M. 2017. The importance of snow in species distribution models of Arctic vegetation. Ecography 41:1024–37.

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2017. Vegan: Community ecology package. R package version 2.4-4. https://CRAN.R-project.org/package=vegan.

  • Olthof I, Fraser RH, Schmitt C. 2015. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk coastal plain: Northwest Territories, Canada since 1985. Remote Sens Environ 168:194–204.

    Google Scholar 

  • Porter C, Morin P, Howat I, Noh M-J, Bates B, Peterman K, Keesey S, Schlenk M, Gardiner J, Tomko K, Willis M, Kelleher C, Cloutier M, Husby E, Foga S, Nakamura H, Platson M, Wethington, M, Williamson C, Bauer G, Enos J, Arnold G, Kramer W, Becker P, Doshi A, D’Souza C, Cummens P, Laurier F, Bojesen M. 2018. ArcticDEM. Available from https://doi.org/10.7910/DVN/OHHUKH [19 December 2019]. Harvard Dataverse V1.

  • Proctor MCF. 2000. The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151:41–9.

    Google Scholar 

  • Proctor MCF, Tuba Z. 2002. Poikilohydry and homoihydry: Antithesis or spectrum of possibilities? New Phytol 156:327–49.

    Google Scholar 

  • R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Raynolds MK, Comiso JC, Walker DA, Verbyla D. 2008. Relationship between satellite-derived land surface temperatures, Arctic vegetation types, and NDVI. Remote Sens Environ 112:1884–94.

    Google Scholar 

  • Raynolds MK, Walker DA. 2016. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environmental Research Letters 11:085004.

    Google Scholar 

  • Reichle LM, Epstein HE, Bhatt US, Raynolds MK, Walker DA. 2018. Spatial heterogeneity of the temporal dynamics of Arctic tundra vegetation. Geophys Res Lett 45:9206–15.

    Google Scholar 

  • Riedlinger D, Berkes F. 2001. Contributions of traditional knowledge to understanding climate change in the Canadian Arctic. Polar Rec 37:315–28.

    Google Scholar 

  • Sachs Harbour, Wildlife Management Advisory Council (NWT), Joint Secretariat. 2008. Sachs Harbour Community Conservation Plan 5–109.

  • Sim TG, Swindles GT, Morris PJ, Galka M, Mullan D, Galloway JM. 2019. Pathways for ecological change in Canadian high Arctic wetlands under rapid twentieth century warming. Geophys Res Lett 46:4726–37.

    Google Scholar 

  • Slattery SM, Alisauskas RT. 2007. Distribution and habitat use of Ross’ and lesser snow geese during late brood rearing. J Wildlife Manage 71:2230–7.

    Google Scholar 

  • Tape KD, Hallinger M, Welker JM, Ruess RW. 2012. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15:711–24.

    CAS  Google Scholar 

  • Tremblay B, Levesque E, Boudreau S. 2012. Recent expansion of erect shrubs in the low Arctic: Evidence from eastern Nunavik. Environ Res Lett 7:035501.

    Google Scholar 

  • Vincent LA, Zhang X, Brown RD, Feng Y, Mekis E, Milewska EJ, Wan H, Wang XL. 2015. Observed trends in Canada’s climate and influence of low-frequency variability modes. J Climate 28:4545–60.

    Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ, Wookey PA. 2006. Plant community responses to experimental warming across the tundra biome. Proc Nat Acad Sci USA 103:1342–6.

    CAS  PubMed  Google Scholar 

  • Webber PJ. 1978. Spatial and temporal variation of the vegetation and its productivity, Barrow Alaska. Vegetation and Production Ecology of an Alaskan Arctic Tundra. edited by L.L. Tieszen. Springer-Verlag, New York 37–112.

  • Woo M-K, Young KL. 1997. Hydrology of a small drainage basin with polar oasis environment, Fosheim Peninsula, Ellesmere Island, Canada. Permafr Periglac Process 8:257–77.

    Google Scholar 

  • Woo M-K, Young KL. 2006. High Arctic wetlands: their occurrence, hydrological characteristics and sustainability. J Hydrol 320:432–50.

    Google Scholar 

Download references

Acknowledgements

This work was made possible by the Aurora Research Institute–Western Arctic Research Centre, the Canadian Wildlife Service - Yellowknife, and the Sachs Harbour Hunters and Trappers Committee. We thank Marie Fast, Megan Ross, Eric Reed, and Cindy Wood from the Canadian Wildlife Service, as well as Trevor Lucas, from the Sachs Harbour Hunters and Trappers Committee, for their support with fieldwork and logistics. We also thank Ian Olthof for assistance with the collection and processing of remote sensing data. This research was funded by: the Polar Continental Shelf Program; the Natural Sciences and Engineering Research Council of Canada; ArcticNet; the Northern Scientific Training Program; the Canadian Space Agency Government Related Initiatives Program (GRIP); the Canadian Wildlife Service; and the University of Victoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kiyo F. Campbell.

Additional information

Author Contributions

TKFC and TCL took part in conceptualization and design; TKFC, TCL, and RHF performed research; TKFC analyzed data; TKFC, TCL, RHF, and DH contributed to methods; and TKFC, TCL, RHF, and DH wrote the manuscript.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RTF 1704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, T.K.F., Lantz, T.C., Fraser, R.H. et al. High Arctic Vegetation Change Mediated by Hydrological Conditions. Ecosystems 24, 106–121 (2021). https://doi.org/10.1007/s10021-020-00506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00506-7

Keywords

Navigation