Skip to main content

Advertisement

Log in

Senotherapeutics and HIV-1 Persistence

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the potential use of senotherapeutics, pharmacologic agents that target senescent cells, in addressing HIV-1 persistence.

Recent Findings

Treated HIV-1 infection results in a state of immune exhaustion, which may involve reprogramming of infected and bystander cells toward a state of cellular senescence. Aging research has recently uncovered pathways that make senescent cells uniquely susceptible to pharmacologic intervention. Specific compounds, known as senotherapeutics, have been identified that interrupt pathways senescent cells depend on for survival. Several of these pathways are important in modulating the cellular microenvironment in chronically and latently infected cells. Strategies targeting these pathways may prove useful in combating both HIV-1 persistence and HIV-1-associated immune exhaustion.

Summary

Senotherapeutics have recently been described as potential therapeutics for aging-associated diseases driven by senescent cells. Recently, correlations have emerged between HIV-1 infection, senescence, lifelong chronic infection, and viral persistence. New insights and therapies targeting cellular senescence may offer a novel strategy to address both HIV-1 persistence and immune exhaustion induced by chronic viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Egger M, May M, Chene G, Phillips AN, Ledergerber B, Dabis F, et al. Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet. 2002;360(9327):119–29.

    Article  PubMed  Google Scholar 

  2. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60.

    Article  PubMed  Google Scholar 

  3. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5.

    Article  CAS  PubMed  Google Scholar 

  4. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.

    Article  CAS  PubMed  Google Scholar 

  5. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spudich S, Robertson KR, Bosch RJ, Gandhi RT, Cyktor JC, Mar H, et al. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J Clin Invest. 2019;129(8):3339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. •• Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63 This is the first clinical trial evaluating the safety and efficacy of senolytics in humans. It was not powered to demonstrate efficacy; however, some significant clinical improvements were observed. The regimen of dasatinib and quercetin was well tolerated by participants.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valdez H, Connick E, Smith KY, Lederman MM, Bosch RJ, Kim RS, et al. Limited immune restoration after 3 years’ suppression of HIV-1 replication in patients with moderately advanced disease. AIDS. 2002;16(14):1859–66.

    Article  CAS  PubMed  Google Scholar 

  11. Erlandson KM, Perez J, Abdo M, Robertson K, Ellis RJ, Koletar SL, et al. Frailty, neurocognitive impairment, or both in predicting poor health outcomes among adults living with human immunodeficiency virus. Clin Infect Dis. 2019;68(1):131–8.

    Article  PubMed  Google Scholar 

  12. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017;21:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis. 2011;203(4):452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nelson JA, Krishnamurthy J, Menezes P, Liu Y, Hudgens MG, Sharpless NE, et al. Expression of p16(INK4a) as a biomarker of T-cell aging in HIV-infected patients prior to and during antiretroviral therapy. Aging Cell. 2012;11(5):916–8.

    Article  CAS  PubMed  Google Scholar 

  16. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  PubMed  Google Scholar 

  18. Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell. 2007;11(5):461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Young AR, Narita M. SASP reflects senescence. EMBO Rep. 2009;10(3):228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci. 2017;72(6):780–5.

    CAS  PubMed  Google Scholar 

  24. Ribeiro SP, Milush JM, Cunha-Neto E, Kallas EG, Kalil J, Passero LFD, et al. p16INK4a expression and immunologic aging in chronic HIV infection. PLoS One. 2016;11(11):e0166759.

    Article  CAS  PubMed  Google Scholar 

  25. High KP, Brennan-Ing M, Clifford DB, Cohen MH, Currier J, Deeks SG, et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J Acquir Immune Defic Syndr. 2012;60(Suppl 1):S1–18.

    Article  CAS  PubMed  Google Scholar 

  26. Georgakilas AG, Martin OA, Bonner WM. p21: a two-faced genome guardian. Trends Mol Med. 2017;23(4):310–9.

    Article  CAS  PubMed  Google Scholar 

  27. Romagosa C, Simonetti S, Lopez-Vicente L, Mazo A, Lleonart ME, Castellvi J, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene. 2011;30(18):2087–97.

    Article  CAS  PubMed  Google Scholar 

  28. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szaniawski MA, Spivak AM. Senotherapeutics for HIV and aging. Curr Opin HIV AIDS. 2020;15(2):83–93.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110(12):4055–63.

    Article  CAS  PubMed  Google Scholar 

  34. Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C, Solomon A, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014;1(1):e13–21.

    Article  PubMed  Google Scholar 

  35. Samaraweera L, Adomako A, Rodriguez-Gabin A, McDaid HM. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci Rep. 2017;7(1):1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cummins NW, Sainski AM, Dai H, Natesampillai S, Pang YP, Bren GD, et al. Prime, shock, and kill: priming CD4 T cells from HIV patients with a BCL-2 antagonist before HIV reactivation reduces HIV reservoir size. J Virol. 2016;90(8):4032–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szaniawski MA, Spivak AM, Cox JE, Catrow JL, Hanley T, Williams E, et al. SAMHD1 phosphorylation coordinates the anti-HIV-1 response by diverse interferons and tyrosine kinase inhibition. mBio. 2018 May; 15;9(3). pii: e00819-18. https://doi.org/10.1128/mBio.00819-18.

  38. Salgado M, Martinez-Picado J, Galvez C, Rodriguez-Mora S, Rivaya B, Urrea V, et al. Dasatinib protects humanized mice from acute HIV-1 infection. Biochem Pharmacol. 2020;174:113625. https://doi.org/10.1016/j.bcp.2019.113625.

  39. Gavegnano C, Brehm JH, Dupuy FP, Talla A, Ribeiro SP, Kulpa DA, et al. Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors. PLoS Pathog. 2017;13(12):e1006740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Spivak AM, Larragoite ET, Coletti ML, Macedo AB, Martins LJ, Bosque A, et al. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology. 2016;13(1):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4:e12997.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A. 2015;112(46):E6301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin AR, Pollack RA, Capoferri A, Ambinder RF, Durand CM, Siliciano RF. Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity. J Clin Invest. 2017;127(2):651–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stock PG, Barin B, Hatano H, Rogers RL, Roland ME, Lee TH, et al. Reduction of HIV persistence following transplantation in HIV-infected kidney transplant recipients. Am J Transplant. 2014;14(5):1136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Routy JP, Isnard S, Mehraj V, Ostrowski M, Chomont N, Ancuta P, et al. Effect of metformin on the size of the HIV reservoir in non-diabetic ART-treated individuals: single-arm non-randomised Lilac pilot study protocol. BMJ Open. 2019;9(4):e028444.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ. 2009;338:a3172.

    Article  PubMed  Google Scholar 

  47. Desai S, Landay A. Early immune senescence in HIV disease. Curr HIV/AIDS Rep. 2010;7(1):4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moore RD, Keruly JC. CD4+ cell count 6 years after commencement of highly active antiretroviral therapy in persons with sustained virologic suppression. Clin Infect Dis. 2007;44(3):441–6.

    Article  PubMed  Google Scholar 

  49. Plaeger SF, Collins BS, Musib R, Deeks SG, Read S, Embry A. Immune activation in the pathogenesis of treated chronic HIV disease: a workshop summary. AIDS Res Hum Retrovir. 2012;28(5):469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Currier JS, Taylor A, Boyd F, Dezii CM, Kawabata H, Burtcel B, et al. Coronary heart disease in HIV-infected individuals. J Acquir Immune Defic Syndr. 2003;33(4):506–12.

    Article  PubMed  Google Scholar 

  51. Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013;173(8):614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12.

    Article  CAS  PubMed  Google Scholar 

  53. Brothers TD, Kirkland S, Guaraldi G, Falutz J, Theou O, Johnston BL, et al. Frailty in people aging with human immunodeficiency virus (HIV) infection. J Infect Dis. 2014;210(8):1170–9.

    Article  PubMed  Google Scholar 

  54. Leng SX, Margolick JB. Understanding frailty, aging, and inflammation in HIV infection. Curr HIV/AIDS Rep. 2015;12(1):25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Piggott DA, Varadhan R, Mehta SH, Brown TT, Li H, Walston JD, et al. Frailty, inflammation, and mortality among persons aging with HIV infection and injection drug use. J Gerontol A Biol Sci Med Sci. 2015;70(12):1542–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ho DD, Rota TR, Hirsch MS. Infection of monocyte/macrophages by human T lymphotropic virus type III. J Clin Invest. 1986;77(5):1712–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wong ME, Jaworowski A, Hearps AC. The HIV reservoir in monocytes and macrophages. Front Immunol. 2019;10:1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Chen NC, Partridge AT, Tuzer F, Cohen J, Nacarelli T, Navas-Martin S, et al. Induction of a senescence-like phenotype in cultured human fetal microglia during HIV-1 infection. J Gerontol A Biol Sci Med Sci. 2018;73(9):1187–96 This study provides evidence that HIV-1-infected cells of myeloid origin demonstrate a senescent phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herbein G, Varin A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology. 2010;7:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chun TW, Engel D, Mizell SB, Hallahan CW, Fischette M, Park S, et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med. 1999;5(6):651–5.

    Article  CAS  PubMed  Google Scholar 

  61. Kulkosky J, Nunnari G, Otero M, Calarota S, Dornadula G, Zhang H, et al. Intensification and stimulation therapy for human immunodeficiency virus type 1 reservoirs in infected persons receiving virally suppressive highly active antiretroviral therapy. J Infect Dis. 2002;186(10):1403–11.

    Article  CAS  PubMed  Google Scholar 

  62. Prins JM, Jurriaans S, van Praag RM, Blaak H, van Rij R, Schellekens PT, et al. Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS. 1999;13(17):2405–10.

    Article  CAS  PubMed  Google Scholar 

  63. Spivak AM, Planelles V. HIV-1 eradication: early trials (and tribulations). Trends Mol Med. 2016;22(1):10–27.

    Article  PubMed  Google Scholar 

  64. Rasmussen TA, Schmeltz Sogaard O, Brinkmann C, Wightman F, Lewin SR, Melchjorsen J, et al. Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother. 2013;9(5):993–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Delagreverie HM, Delaugerre C, Lewin SR, Deeks SG, Li JZ. Ongoing clinical trials of human immunodeficiency virus latency-reversing and immunomodulatory agents. Open Forum Infect Dis. 2016;3(4):ofw189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cummins NW, Sainski-Nguyen AM, Natesampillai S, Aboulnasr F, Kaufmann S, Badley AD. Maintenance of the HIV reservoir is antagonized by selective BCL2 inhibition. J Virol. 2017; 12;91(11). pii: e00012-17. https://doi.org/10.1128/JVI.00012-17. Print 2017 Jun 1. PMID: 28331083

  67. Bosque A, Famiglietti M, Weyrich AS, Goulston C, Planelles V. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog. 2011;7(10):e1002288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012;12(6):387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi H, Zhang CJ, Chen GY, Yao SQ. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J Am Chem Soc. 2012;134(6):3001–14.

    Article  CAS  PubMed  Google Scholar 

  70. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A. 2001;98(15):8732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 2019;21(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  72. Blagosklonny MV. Selective anti-cancer agents as anti-aging drugs. Cancer Biol Ther. 2013;14(12):1092–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li Q, Rao RR, Araki K, Pollizzi K, Odunsi K, Powell JD, et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity. 2011;34(4):541–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Titov AA, Baker HV, Brusko TM, Sobel ES, Morel L. Metformin inhibits the type 1 IFN response in human CD4(+) T cells. J Immunol. 2019;203(2):338–48.

    Article  CAS  PubMed  Google Scholar 

  75. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23(6):1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192.

    Article  CAS  PubMed  Google Scholar 

  77. Shikuma CM, Chew GM, Kohorn L, Souza SA, Chow D, SahBandar IN, et al. Metformin reduces CD4 T cell exhaustion in HIV-infected adults on suppressive antiretroviral therapy. AIDS Res Hum Retroviruses. 2020; 8. https://doi.org/10.1089/AID.2019.0078.

Download references

Funding

This work was supported in part by funding from the National Institutes of Health National Institute on Aging R03AG060192 (AMS) and the Infectious Diseases Society of America 2019 Grants for Emerging Researchers/Clinicians Mentorship (IDSA GERM; MAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Spivak.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szaniawski, M.A., Spivak, A.M. Senotherapeutics and HIV-1 Persistence. Curr HIV/AIDS Rep 17, 219–225 (2020). https://doi.org/10.1007/s11904-020-00496-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-020-00496-0

Keywords

Navigation