Skip to main content

Advertisement

Log in

Tropospheric carbon monoxide over the northern Indian Ocean during winter: influence of inter-continental transport

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

South Asian outflow over the adjoining marine regions is most pronounced during winter season, whereas the prevalence of strong winds aloft can transport the influences from inter-continental sources. Here, we investigate the tropospheric carbon monoxide (CO) distribution over the northern Indian Ocean (IO) combining shipborne measurements carried out during the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB) campaign (January–February 2018), retrievals from Measurements of Pollution in the Troposphere (MOPITT), and Copernicus Atmosphere Monitoring Service (CAMS) model. Surface CO varied from ~ 50 to 365 ppbv (179 ± 67 ppbv) with higher levels over the coastal region of southeast Arabian Sea and lower levels over the equatorial IO. We observed lower CO levels (200 ± 43 ppbv) than those during the Indian Ocean Experiment-1999 (229 ± 40 ppbv) supporting the reported decreasing trend of tropospheric CO. In situ CO observations are found to be in a good agreement with the satellite retrievals (MOPITT-version 8) as well as the CAMS model results (r2 = 0.60‒0.65). The upper-tropospheric CO (300‒200 hPa) over the equatorial IO is observed to be higher by up to 30% during February-2018 as compared to the decadal mean, coinciding with anomalous westerlies resulting from a disturbed Walker cell over the equatorial IO and deeper penetration of the sub-tropical jet. The influences of African forest fires are suggested to have enhanced the upper-tropospheric CO over the IO during February-2018. Our study highlights the importance of strong large-scale dynamics and global biomass-burning emissions in the wintertime pollution loading over the IO, besides the South Asian outflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akritidis D, Katragkou E, Zanis P, Pytharoulis I, Melas D, Flemming J, Inness A, Clark H, Plu M, Eskes H (2018) A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation. Atmos Chem Phys 18:15515–15534. https://doi.org/10.5194/acp-18-15515-2018

    Article  Google Scholar 

  • Andreae MO (1983) Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220:1148–1151. https://doi.org/10.1126/science.220.4602.1148

    Article  Google Scholar 

  • Asnani GC (2005) Tropical meteorology, 2nd edn, vol 2, Pune, India

  • Aswini AR, Hegde P, Aryasree S, Girach IA, Nair PR (2019) Continental outflow of anthropogenic aerosols over Arabian Sea and Indian Ocean during wintertime: ICARB-2018 campaign. Sci Total Environ 1:1. https://doi.org/10.1016/j.scitotenv.2019.135214

    Article  Google Scholar 

  • Burkert J, Andre´s-Herna´ndez MD, Reichert L, Meyer-Arnek J, Doddridge B, Dickerson RR, Muhle J, Zahn A, Carsey T, Burrows JP (2003) Trace gas and radical diurnal behavior in the marine boundary layer during INDOEX 1999. J Geophys Res 108:D8, 8000. https://doi.org/10.1029/2002JD002790

    Article  Google Scholar 

  • Chand D, Modh KS, Naja M, Venkataramani S, Lal S (2001) Latitudinal trends in O3, CO, CH4, and SF6 over the Indian Ocean during the INDOEX IFP-1999 ship cruise. Curr Sci 80:100–104

    Google Scholar 

  • Chandra N, Venkataramani S, Lal S, Sheel V, Pozzer A (2016) Effects of convection and long-range transport on the distribution of carbon monoxide in the troposphere over India. Atmos Pollut Res. https://doi.org/10.1016/j.apr.2016.03.005

    Article  Google Scholar 

  • Chutia L, Ojha N, Girach IA, Sahu LK, Alvarado LMA, Burrows JP, Pathak B, Bhuyan PK (2019) Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation versus observations. Environ Pollut 252:256–269. https://doi.org/10.1016/j.envpol.2019.05.097

    Article  Google Scholar 

  • Cros B, Delmas R, Nganga D, Clairac B, Fontan J (1988) Seasonal trends of ozone in equatorial Africa: experimental evidence of photochemical formation. J Geophys Res 93(D7):8355–8366. https://doi.org/10.1029/JD093iD07p08355

    Article  Google Scholar 

  • Crutzen PJ, Zimmermann PH (1991) The changing photochemistry of the troposphere. Tellus 43:136–151. https://doi.org/10.1034/j.1600-0870.1991.00012.x

    Article  Google Scholar 

  • Daniel JS, Solomon S (1998) On the climate forcing of carbon monoxide. J Geophys Res 103(D11):13249–13260. https://doi.org/10.1029/98JD00822

    Article  Google Scholar 

  • de Gouw JA, Warneke C, Scheeren HA, van der Veen C, Bolder M, Scheele MP, Williams J, Wong S, Lange L, Fischer H, Lelieveld J (2001) Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX. J Geophys Res 106:D22, 28453–28467. https://doi.org/10.1029/2000JD900810

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars AC, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J, Park B, Peubey C, de Rosnay P, Tavolato C, Thépaut J, Vitart F (2011) The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Drummond JR, 1992, Measurements of pollution in the troposphere (MOPITT). In: Gille JC, Visconti G (eds) The use of EOS for studies of atmospheric physics. North Holland, Amsterdam

  • Deeter MN, Emmons LK, Edwards DP, Gille JC, Drummond JR (2004) Vertical resolution and information content of CO profiles retrieved by MOPITT. Geophys Res Lett 31:L15112. https://doi.org/10.1029/2004GL020235

    Article  Google Scholar 

  • Deeter MN, Edwards DP, Francis GL, Gille JC, Mao D, Martinez-Alonso S, Worden HM, Ziskin D, Andreae MO (2019) Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product. Atmos Meas Tech Discuss. https://doi.org/10.5194/amt-2019-41

    Article  Google Scholar 

  • Field RD, van der Werf GR, Fanin T, Fetzer EJ, Fuller R, Jethva H, Levy R, Livesey NJ, Luo M, Torres O, Worden HM (2016) Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. PNAS 113(33):9204–9209. https://doi.org/10.1073/pnas.1524888113

    Article  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic, London

    Google Scholar 

  • Fishman J, Seiler W (1983) Correlative nature of ozone and carbon monoxide in the troposphere: implications for the tropospheric ozone budget. J Geophys Res 88(C6):3662–3670. https://doi.org/10.1029/JC088iC06p03662

    Article  Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282. https://doi.org/10.1016/S0034-4257(03)00184-6

    Article  Google Scholar 

  • Girach IA, Nair PR, David LM, Hegde P, Mishra MK, Kumar GM, Das SM, Ojha N, Naja M (2012) The changes in near-surface ozone and precursors at two nearby tropical sites during annular solar eclipse of 15 January 2010. J Geophys Res 117:D01303. https://doi.org/10.1029/2011JD016521

    Article  Google Scholar 

  • Girach IA, Nair PR (2014) On the vertical distribution of Carbon monoxide over Bay of Bengal during winter: role of water vapour and vertical updrafts. J Atmos Sol Terr Phys 117:31–47. https://doi.org/10.1016/j.jastp.2014.05.003

    Article  Google Scholar 

  • Girach IA, Nair PR (2014b) Carbon monoxide over Indian region as observed by MOPITT. Atmos Environ 99:599–609. https://doi.org/10.1016/j.atmosenv.2014.10.019

    Article  Google Scholar 

  • Girach IA, Nair PR (2016) Long-term trend in tropospheric carbon monoxide over the globe. In: Proceedings of the SPIE 9876, remote sensing of the atmosphere, clouds, and precipitation VI, 987624. https://doi.org/10.1117/12.2223380

  • Girach IA, Ojha N, Nair PR, Pozzer A, Tiwari YK, Ravi Kumar K, Lelieveld J (2017) Variations in O3, CO, and CH4 over the Bay of Bengal during the summer monsoon season: shipborne measurements and model simulations. Atmos Chem Phys 17:257–275. https://doi.org/10.5194/acp-17-257-2017

    Article  Google Scholar 

  • Huijnen V, Wooster MJ, Kaiser JW, Gaveau DLA, Flemming J, Parrington M, Inness A, Murdiyarso D, Main B, van Weele M (2016) Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Nat Sci Rep 6:26886. https://doi.org/10.1038/srep26886

    Article  Google Scholar 

  • Hollingsworth A, Engelen RJ, Textor C, Benedetti A, Boucher O, Chevallier F, Dethof A, Elbern H, Eskes H, Flemming J, Granier C, Kaiser JW, Morcrette J-J, Rayner P, Peuch VH, Rouil L, Schultz MG, Simmons AJ, The GEMSC (2008) Toward a monitoring and forecasting system for atmospheric composition: the GEMS project, B. Am Meteorol Soc 89:1147–1164. https://doi.org/10.1175/2008BAMS2355.1

    Article  Google Scholar 

  • Inness A, Ades M, Agustí-Panareda A, Barré J, Benedictow A, Blechschmidt A-M, Dominguez JJ, Engelen R, Eskes H, Flemming J, Huijnen V, Jones L, Kipling Z, Massart S, Parrington M, Peuch V-H, Razinger M, Remy S, Schulz M, Suttie M (2019) The CAMS reanalysis of atmospheric composition. Atmos Chem Phys 19:3515–3556. https://doi.org/10.5194/acp-19-3515-2019

    Article  Google Scholar 

  • Inness A, Blechschmidt A-M, Bouarar I, Chabrillat S, Crepulja M, Engelen RJ, Eskes H, Flemming J, Gaudel A, Hendrick F, Huijnen V, Jones L, Kapsomenakis J, Katragkou E, Keppens A, Langerock B, de Mazière M, Melas D, Parrington M, Peuch VH, Razinger M, Richter A, Schultz MG, Suttie M, Thouret V, Vrekoussis M, Wagner A, Zerefos C (2015) Data assimilation of satellite retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS. Atmos Chem Phys 15:5275–5303. https://doi.org/10.5194/acp-15-5275-2015

    Article  Google Scholar 

  • IPCC (2001) Intergovernmental Panel on Climate Change, Climate Change 2001: the scientific basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, USA, 2001

  • IPCC (2013) Intergovernmental panel on climate change, climate change 2013: the physical science basis, report of working group I to the fifth assessment of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Krishnamurti TN, Chakraborty A, Martin A, Lau WK, Kim K-M, Sud Y, Walker G (2009) Impact of Arabian Sea pollution on the Bay of Bengal winter monsoon rains. J Geophys Res 114:D06213. https://doi.org/10.1029/2008JD010679

    Article  Google Scholar 

  • Kumar R, Naja M, Pfister GG, Barth MC, Brasseur GP (2013) Source attribution of carbon monoxide in India and surrounding regions during wintertime. J Geophys Res Atmos 118:1981–1995. https://doi.org/10.1002/jgrd.50134

    Article  Google Scholar 

  • Lal S, Naja M, Jayaraman A (1998) Ozone in the marine boundary layer over the tropical Indian Ocean. J Geophys Res 103(D15):18907–18917. https://doi.org/10.1029/98JD01566

    Article  Google Scholar 

  • Lal S, Chand D, Sahu LK, Venkataramani S, Brasseur G, Schultz MG (2006) High levels of ozone and related gases over the Bay of Bengal during winter and early spring of 2001. Atmos Environ 40:1633–1644,. https://doi.org/10.1016/j.atmosenv.2005.10.060

    Article  Google Scholar 

  • Lal S, Sahu LK, Venkataramani S (2007) Impact of transport from the surrounding continental regions on the distributions of ozone and related trace gases over the Bay of Bengal during February 2003. J Geophys Res 112:D14302. https://doi.org/10.1029/2006JD008023

    Article  Google Scholar 

  • Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096. https://doi.org/10.5194/acp-10-11017-2010

    Article  Google Scholar 

  • Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat ATJ, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 1:291. https://doi.org/10.1126/science.1057103

    Article  Google Scholar 

  • Lau K-M, Yang S (2015) Tropical meteorology and climate. Encyclop Atmos Sci 2:177–181. https://doi.org/10.1016/B978-0-12-382225-3.00450-3

    Article  Google Scholar 

  • Lobert J, Harris JM (2002) Trace gases and air mass origin at Kaashidhoo. Indian Ocean J Geophys Res 107(19):8013. https://doi.org/10.1029/2001JD000731

    Article  Google Scholar 

  • Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res Oceans Atmos C86:7210–7254

    Article  Google Scholar 

  • Mallik C, Ghosh D, Ghosh D, Sarkar U, Lal S, Venkataramani S (2014) Variability of SO2, CO, and light hydrocarbons over a megacity in Eastern India: effects of emissions and transport. Environ Sci Pollut Res 21:8692–8706. https://doi.org/10.1007/s11356-014-2795-x

    Article  Google Scholar 

  • Mallik C, Lal S, Venkataramani S, Naja M, Ojha N (2013) Variability in ozone and its precursors over the Bay of Bengal during post monsoon: transport and emission effects. J Geophys Res-Atmos 118:10190–10209. https://doi.org/10.1002/jgrd.50764

    Article  Google Scholar 

  • Mallik C, Tomsche L, Bourtsoukidis E, Crowley JN, Derstroff B, Fischer H, Hafermann S, Hüser I, Javed U, Keßel S, Lelieveld J, Martinez M, Meusel H, Novelli A, Phillips GJ, Pozzer A, Reiffs A, Sander R, Taraborrelli D, Schuladen SC, Su J, Williams H, Harder H (2018) Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HOx measurements over Cyprus. Atmos Chem Phys 18:10825–10847. https://doi.org/10.5194/acp-18-10825-2018

    Article  Google Scholar 

  • Mandal TK, Khan A, Ahammed YN, Tanwar RS, Parmar RS, Zalpuri KS, Gupta PK, Jain SL, Singh R, Mitra AP, Garg SC, Suryanarayana A, Murty VSN, Kumar MD, Shepherd AJ (2006) Observations of trace gases and aerosols over the Indian Ocean during the monsoon transition period. J Earth Syst Sci 115(4):473–484. https://doi.org/10.1007/BF02702875

    Article  Google Scholar 

  • MOPITT Version 8 Product User’s Guide, MOPITT Algorithm Development Team, National Center for Atmospheric Research, Boulder, CO 80307, December, 2018

  • Naja M, Chand D, Sahu L, Lal S (2004) Trace gases over marine regions around India. Ind J Mar Sci 33(1):95–106

    Google Scholar 

  • Novelli PC, Steele P, Tans PP (1992) Mixing ratios of carbon monoxide in the troposphere. J Geophys Res 97:20731–20750. https://doi.org/10.1029/92JD02010

    Article  Google Scholar 

  • Ojha N, Pozzer A, Rauthe-Schöch A, Baker AK, Yoon J, Brenninkmeijer CAM, Lelieveld J (2016) Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport. Atmos Chem Phys 16:3013–3032. https://doi.org/10.5194/acp-16-3013-2016

    Article  Google Scholar 

  • Ojha N, Girach I, Sharma K, Nair P, Singh J, Sharma N, Singh N, Flemming J, Inness A, Subrahmanyam KV (2019) Surface ozone in the Doon Valley of the Himalayan foothills during spring. Environ Sci Pollut Res 26(19):19155–19170. https://doi.org/10.1007/s11356-019-05085-2. doi

    Article  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2012) Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic plain. Environ Sci Technol 46:686–695. https://doi.org/10.1021/es202857w

    Article  Google Scholar 

  • Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display system: READY. Environ Modell Softw 95:210–228. https://doi.org/10.1016/j.envsoft.2017.06.025

    Article  Google Scholar 

  • Sahu LK, Lal S, Venkataramani S (2006) Distributions of O3, CO and hydrocarbons over the Bay of Bengal: a study to assess the role of transport from southern India and marine regions during September–October 2002. Atmos Environ 40:4633–4645. https://doi.org/10.1016/j.atmosenv.2006.02.037

    Article  Google Scholar 

  • Sarangi T, Naja M, Ojha N, Kumar R, Lal S, Venkataramani S, Kumar A, Sagar R, Chandola HC (2014) First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas. J Geophys Res Atmos 119:1592–1611. https://doi.org/10.1002/2013JD020631

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, USA

    Google Scholar 

  • Siegel SM, Renwick G, Rosen LA (1962) Formation of carbon monoxide during seed germination and seedling growth. Science 137:683–684. https://doi.org/10.1126/science.137.3531.683

    Article  Google Scholar 

  • Srivastava S, Lal S, Venkataramani S, Gupta S, Sheel V (2012) Surface distributions of O3, CO and hydrocarbons over the Bay of Bengal and the Arabian Sea during pre-monsoon season. Atmos Environ 47:459–467. https://doi.org/10.1016/j.atmosenv.2011.10.023

    Article  Google Scholar 

  • Subrahamanyam DB, Gupta KS, Ravindran S, Krishnan P (2001) Study of sea breeze and land breeze along the west coast of Indian sub-continent over the latitude range 15°N to 8°N during INDOEX IFP-99 (SK-141) cruise. Curr Sci 80:85–88

    Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteor Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  • Stein O, Schultz MG, Bouarar I, Clark H, Huijnen V, Gaudel A, George M, Clerbaux C (2014) On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations. Atmos Chem Phys 14:9295–9316. https://doi.org/10.5194/acp-14-9295-2014

    Article  Google Scholar 

  • Stubbins AP, Uher G, Law CS, Mopper K, Robinson C, Upstill-Goddard RC (2006) Open-ocean carbon monoxide photoproduction. Deep-Sea Res II 53(2):1695–1705. https://doi.org/10.1016/j.dsr2.2006.05.011

    Article  Google Scholar 

  • Sze ND (1977) Anthropogenic CO emissions: Implications for the atmospheric CO-OH-CH4 cycle. Science 195:673–675. https://doi.org/10.1126/science.195.4279.673

    Article  Google Scholar 

  • Tanimoto H, Sawa Y, Matsueda H, Yonemura S, Wada A, Mukai H, Wang T, Poon S, Wong A, Lee G, Jung J-Y, Kim K-R, Lee M, Lin N-H, Wang J-L, Ou-Yang C-F, Wu C-F (2007) Evaluation of standards and methods for continuous measurements of carbon monoxide at ground-based sites in Asia. Pap Meteorol Geophys 58:85–93. https://doi.org/10.2467/mripapers.58.85

    Article  Google Scholar 

  • Wagner A, Blechschmidt A-M, Bouarar I, Brunke E-G, Clerbaux C, Cupeiro M, Cristofanelli P, Eskes H, Flemming J, Flentje H, George M, Gilge S, Hilboll A, Inness A, Kapsomenakis J, Richter A, Ries L, Spangl W, Stein O, Weller R, Zerefos C (2015) Evaluation of the MACC operational forecast system: potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere. Atmos Chem Phys 15:14005–14030. https://doi.org/10.5194/acp-15-14005-2015

    Article  Google Scholar 

  • WHO (2004) Report on environmental health criteria 213, carbon monoxide, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • WMO (2018) WDCGG Data summary No. 42, global atmosphere watch, Japan Meteorological Agency In Co-Operation With World Meteorological Organization https://gaw.kishou.go.jp/publications/summary

  • Worden HM, Deeter MN, Frankenberg C, George M, Nichitiu F, Worden J, Aben I, Bowman KW, Clerbaux C, Coheur PF, de Laat ATJ, Detweiler R, Drummond JR, Edwards DP, Gille JC, Hurtmans D, Luo M, Martínez-Alonso S, Massie S, Pfister G, Warner JX (2013) Decadal record of satellite carbon monoxide observations. Atmos Chem Phys 13:837–850. https://doi.org/10.5194/acp-13-837-2013

    Article  Google Scholar 

  • Yu S, Eder B, Dennis R, Chu S-H, Schwartz S (2006) New unbiased symmetric metrics for evaluation of air quality models. Atmos Sci Lett 7:26–34. https://doi.org/10.1002/asl.125

    Article  Google Scholar 

  • Zheng B, Chevallier F, Yin Y, Ciais P, Fortems-Cheiney A, Deeter MN, Parker RJ, Wang Y, Worden HM, Zhao Y (2019) Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth Syst Sci Data 11:1411–1436. https://doi.org/10.5194/essd-11-1411-2019

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB) project of ISRO-GBP. The National Centre for Polar and Ocean Research (NCPOR), Goa, and the Ministry of Earth Sciences, Government of India, are highly acknowledged for the ship board facilities onboard ORV Sagar Kanya. The authors acknowledge Dr. N.V.P. Kiran Kumar for providing meteorological data recorded onboard ship. Aircraft-based observations during the Indian Ocean Experiment were obtained from http://data.eol.ucar.edu/master_list/?project=INDOEX. The vertical profiles of CO from MOPITT were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center (ftp://l5ftl01.larc.nasa.gov/MOPITT/). We acknowledge the MOPITT mission scientists and associated NASA personnel for the production of the data used in this study. NOAA Air Resources Laboratory (ARL) is acknowledged for the HYSPLIT model and READY website (https://www.arl.noaa.gov/hysplit/hysplit/ and http://www.arl.noaa.gov/ready.php). MODIS fire detection data from ftp://fuoco.geog.umd.edu/modis/C6/mcd14ml/; ERA-Interim wind data from ECMWF (European Center for Medium range Weather Forecasting; https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/); and CAMS (http://www.copernicus.eu/main/atmosphere-monitoring; https://atmosphere.copernicus.eu/global-production-eqa-archive) data of CO from https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=pl/ utilised in the study are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran A. Girach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girach, I.A., Nair, P.R., Ojha, N. et al. Tropospheric carbon monoxide over the northern Indian Ocean during winter: influence of inter-continental transport. Clim Dyn 54, 5049–5064 (2020). https://doi.org/10.1007/s00382-020-05269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05269-4

Keywords

Navigation