Skip to main content
Log in

Bioreactor production of 2,3-butanediol by Pantoea agglomerans using soybean hull acid hydrolysate as substrate

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Production of 2,3-butanediol (2,3-BD) by Pantoea agglomerans strain BL1 was investigated using soybean hull hydrolysate as substrate in batch reactors. The cultivation media consisted of a mixture of xylose, arabinose, and glucose, obtained from the hemicellulosic fraction of the soybean hull biomass. We evaluated the influence of oxygen supply, pH control, and media supplementation on the growth kinetics of the microorganism and on 2,3-BD production. P. agglomerans BL1 was able to simultaneously metabolize all three monosaccharides present in the broth, with average conversions of 75% after 48 h of cultivation. The influence of aeration conditions employed demonstrated the mixed acid pathway of 2,3-BD formation by enterobacteria. Under fully aerated conditions (2 vvm of air), up to 14.02 g L−1 of 2.3-BD in 12 h of cultivation were produced, corresponding to yields of 0.53 g g−1 and a productivity of 1.17 g L−1 h−1, the best results achieved. These results suggest the production potential of 2,3-BD by P. agglomerans BL1, which has been recently isolated from an environmental consortium. The present work proposes a solution for the usage of the hemicellulosic fraction of agroindustry biomasses, carbohydrates whose utilization are not commonly addressed in bioprocess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27:715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  2. Park JM, Rathnasingh C, Song H (2015) Enhanced production of (R, R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca. J Ind Microbiol Biotechnol 42:1419–1425. https://doi.org/10.1007/s10295-015-1648-z

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Li K, Wang Y et al (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27. https://doi.org/10.1016/j.ymben.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  4. Białkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32:1–14. https://doi.org/10.1007/s11274-016-2161-x

    Article  CAS  Google Scholar 

  5. De Mas C, Jansen NB, Tsao GT (1988) Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioeng 31:366–377. https://doi.org/10.1002/bit.260310413

    Article  PubMed  Google Scholar 

  6. Garg SKK, Jain A (1995) Fermentative production of 2, 3-butanediol: a review. Bioresour Technol 51:103–109. https://doi.org/10.1016/0960-8524(94)00136-O

    Article  CAS  Google Scholar 

  7. Voloch M, Jansen NB, Ladisch MR et al (1987) 2,3-Butanediol. Comprehensive biotechnology: the principles, applications and regulations of biotechnology in industry, agriculture and medicine, 26th edn. Elsevier, Oxford, pp 933–944

    Google Scholar 

  8. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364. https://doi.org/10.1016/j.biotechadv.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Al LA, Ju LK (2016) Soybean carbohydrate as fermentation feedstock for production of biofuels and value-added chemicals. Process Biochem 51:1046–1057. https://doi.org/10.1016/j.procbio.2016.04.011

    Article  CAS  Google Scholar 

  10. Ipharraguerre IR, Clark JH (2010) Soyhulls as an alternative feed for lactating dairy cows: a review. J Dairy Sci 86:1052–1073. https://doi.org/10.3168/jds.s0022-0302(03)73689-3

    Article  Google Scholar 

  11. Hickert LR, Cruz MM, Dillon AJP et al (2014) Fermentation kinetics of acid-enzymatic soybean hull hydrolysate in immobilized-cell bioreactors of Saccharomyces cerevisiae, Candida shehatae, Spathaspora arborariae, and their co-cultivations. Biochem Eng J 88:61–67. https://doi.org/10.1016/j.bej.2014.04.004

    Article  CAS  Google Scholar 

  12. Cheng C, Zhou Y, Lin M et al (2017) Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses : fermentation kinetics and economic analysis. Bioresour Technol 223:166–174. https://doi.org/10.1016/j.biortech.2016.10.042

    Article  CAS  PubMed  Google Scholar 

  13. Loman AA, Islam SMM, Ju L (2018) Production of arabitol from enzymatic hydrolysate of soybean flour by Debaryomyces hansenii fermentation: 641–653. https://doi.org/10.1007/s00253-017-8626-5

  14. Yu L, Xu M, Tang I, Yang S (2015) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng 112:2134–2141. https://doi.org/10.1002/bit.25613

    Article  CAS  PubMed  Google Scholar 

  15. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  CAS  Google Scholar 

  16. Cassales A, de Souza-Cruz PB, Rech R, Záchia Ayub MA (2011) Optimization of soybean hull acid hydrolysis and its characterization as a potential substrate for bioprocessing. Biomass Bioenerg 35:4675–4683. https://doi.org/10.1016/j.biombioe.2011.09.021

    Article  CAS  Google Scholar 

  17. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  18. Yang T, Rao Z, Zhang X et al (2017) Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 37:990–1005. https://doi.org/10.1080/07388551.2017.1299680

    Article  CAS  PubMed  Google Scholar 

  19. Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22:749–757. https://doi.org/10.1016/j.copbio.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  20. Maddox IS (1996) Microbial Production of 2,3-Butanediol. In: Rehm HJ, Reed G (eds) Biotechnology, 2nd edn. VCH Verlagsgesellschaft, Weinheim, pp 270–288

    Google Scholar 

  21. Guo X, Wang Y, Guo J et al (2017) Efficient production of 2,3-butanediol from cheese whey powder (CWP) solution by Klebsiella pneumoniae through integrating pulsed fed-batch fermentation with a two-stage pH control strategy. Fuel 203:469–477. https://doi.org/10.1016/j.fuel.2017.04.138

    Article  CAS  Google Scholar 

  22. Wong CL, Yen HW, Lin CL, Chang JS (2014) Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain. Bioresour Technol 152:169–176. https://doi.org/10.1016/j.biortech.2013.10.101

    Article  CAS  PubMed  Google Scholar 

  23. Maina S, Stylianou E, Vogiatzi E et al (2019) Improvement on bioprocess economics for 2,3-butanediol production from very high polarity cane sugar via optimisation of bioreactor operation. Bioresour Technol 274:343–352. https://doi.org/10.1016/j.biortech.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  24. Cortivo P, Machado J, Hickert L et al (2019) Production of 2,3-butanediol by Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1 cultivated in acid and enzymatic hydrolysates of soybean hull. Biotechnol Prog. https://doi.org/10.1002/btpr.2793

    Article  PubMed  Google Scholar 

  25. Rossi DM, Berne Da Costa J, Aquino De Souza E et al (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrogen Energy 36:4814–4819. https://doi.org/10.1016/j.ijhydene.2011.01.005

    Article  CAS  Google Scholar 

  26. Nielsen SS (2017) Food analysis, 4th edn. Springer, New York

    Book  Google Scholar 

  27. Rodrigues E, Mariutti LRB, Mercadante AZ (2013) Carotenoids and phenolic compounds from Solanum sessiliflorum, an unexploited amazonian fruit, and their scavenging capacities against reactive oxygen and nitrogen species. J Agric Food Chem 61:3022–3029. https://doi.org/10.1021/jf3054214

    Article  CAS  PubMed  Google Scholar 

  28. Cortivo PRD, Hickert LR, Hector R, Záchia Ayub MA (2018) Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind Crop Prod 113:10–18. https://doi.org/10.1016/j.indcrop.2018.01.010

    Article  CAS  Google Scholar 

  29. Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318. https://doi.org/10.1016/j.biortech.2018.04.099

    Article  CAS  PubMed  Google Scholar 

  30. Lee SJ, Lee JH, Yang X et al (2015) Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes. Biotechnol J 10:1920–1928. https://doi.org/10.1002/biot.201500090

    Article  CAS  PubMed  Google Scholar 

  31. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg 6:8. https://doi.org/10.1016/j.biombioe.2012.03.026

    Article  CAS  Google Scholar 

  32. Hickert LR, Cunha-pereira F, De S-C et al (2013) Ethanogenic fermentation of co-cultures of Candida shehatae HM 52. 2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresour Technol 131:508–514. https://doi.org/10.1016/j.biortech.2012.12.135

    Article  CAS  PubMed  Google Scholar 

  33. Cheng KK, Liu Q, Zhang JA et al (2010) Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem 45:613–616. https://doi.org/10.1016/j.procbio.2009.12.009

    Article  CAS  Google Scholar 

  34. Joo J, Lee SJ, Yoo HY et al (2016) Improved fermentation of lignocellulosic hydrolysates to 2,3-butanediol through investigation of effects of inhibitory compounds by Enterobacter aerogenes. Chem Eng J 306:916–924. https://doi.org/10.1016/j.cej.2016.07.113

    Article  CAS  Google Scholar 

  35. Qing Q, Guo Q, Zhou L et al (2017) Comparison of alkaline and acid pretreatments for enzymatic hydrolysis of soybean hull and soybean straw to produce fermentable sugars. Ind Crop Prod 109:391–397. https://doi.org/10.1016/j.indcrop.2017.08.051

    Article  CAS  Google Scholar 

  36. Dussán KJ, Silva DDV, Perez VH, da Silva SS (2016) Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast. Renew Energy 87:703–710. https://doi.org/10.1016/j.renene.2015.10.065

    Article  CAS  Google Scholar 

  37. Ji XJ, Nie ZK, Huang H et al (2011) Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol 89:1119–1125. https://doi.org/10.1007/s00253-010-2940-5

    Article  CAS  PubMed  Google Scholar 

  38. Guragain YN, Chitta D, Karanjikar M, Vadlani PV (2017) Appropriate lignocellulosic biomass processing strategies for efficient 2,3-butanediol production from biomass-derived sugars using Bacillus licheniformis DSM 8785. Food Bioprod Process 4:147–158. https://doi.org/10.1016/j.fbp.2017.05.010

    Article  CAS  Google Scholar 

  39. Wang A, Wang Y, Jiang T et al (2010) Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970. https://doi.org/10.1007/s00253-010-2557-8

    Article  CAS  PubMed  Google Scholar 

  40. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  41. Li D, Dai JY, Xiu ZL (2010) A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour Technol 101:8342–8347. https://doi.org/10.1016/j.biortech.2010.06.041

    Article  CAS  PubMed  Google Scholar 

  42. Dai JJ, Cheng JS, Liang YQ et al (2014) Regulation of extracellular oxidoreduction potential enhanced (R, R)-2,3-butanediol production by PaeniBacillus polymyxa CJX518. Bioresour Technol 167:433–440. https://doi.org/10.1016/j.biortech.2014.06.044

    Article  CAS  PubMed  Google Scholar 

  43. Yang Z, Zhang Z (2018) Recent advances on production of 2,3-butanediol using engineered microbes. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2018.03.019

    Article  PubMed  Google Scholar 

  44. Guragain YN, Vadlani PV (2017) 2,3-Butanediol production using Klebsiella oxytoca ATCC 8724: evaluation of biomass derived sugars and fed-batch fermentation process. Process Biochem 58:25–34. https://doi.org/10.1016/j.procbio.2017.05.001

    Article  CAS  Google Scholar 

  45. Zhang Y, Li S, Liu L, Wu J (2013) Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresour Technol 130:256–260. https://doi.org/10.1016/j.biortech.2012.10.036

    Article  CAS  PubMed  Google Scholar 

  46. Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook, 2nd edn. Stockton Press, New York

    Google Scholar 

  47. Gao J, Xu H, Li QJ et al (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using PaeniBacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresour Technol 101:7076–7082. https://doi.org/10.1016/j.biortech.2010.03.143

    Article  CAS  Google Scholar 

  48. Ji XJ, Huang H, Du J et al (2009) Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour Technol 100:5214–5218. https://doi.org/10.1016/j.biortech.2009.05.036

    Article  CAS  PubMed  Google Scholar 

  49. Ripoll V, De Vicente G, Morán B et al (2016) Novel biocatalysts for glycerol conversion into 2,3-butanediol. Process Biochem 51:740–748. https://doi.org/10.1016/j.procbio.2016.03.006

    Article  CAS  Google Scholar 

  50. Loretta L (1965) Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commun 21:290–296. https://doi.org/10.1016/0006-291X(65)90191-9

    Article  Google Scholar 

  51. Jiang LQ, Fang Z, Guo F, Bin YL (2012) Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiellaoxytoca. Bioresour Technol 107:405–410. https://doi.org/10.1016/j.biortech.2011.12.083

    Article  CAS  PubMed  Google Scholar 

  52. Wang XX, Hu H-Y, Liu D-H, Song Y-Q (2016) The implementation of high fermentative 2,3-butanediol production from xylose by simultaneous additions of yeast extract, Na2EDTA, and acetic acid. N Biotechnol 33:16–22. https://doi.org/10.1016/j.nbt.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  53. Bao T, Zhang X, Zhao X et al (2015) Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2, 3-butanediol proportion in Bacillus subtilis. Biotechnol J. https://doi.org/10.1002/biot.201400577

    Article  PubMed  Google Scholar 

  54. Bespalov ZIB, Taylor BL (1996) Behavioral responses of Escherichia coli to changes in redox potential. Proc Natl Acad Sci USA 93:10084–10089. https://doi.org/10.1073/pnas.93.19.10084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ling HZ, Cheng KK, Ge JP, Ping WX (2017) Corncob mild alkaline pretreatment for high 2,3-butanediol production by spent liquor recycle process. Bioenergy Res 10:566–574. https://doi.org/10.1007/s12155-017-9822-y

    Article  CAS  Google Scholar 

  56. Okonkwo CC, Ujor V, Ezeji TC (2017) Investigation of relationship between 2,3-butanediol toxicity and production during growth of Paeni Bacillus polymyxa. N Biotechnol 34:23–31. https://doi.org/10.1016/j.nbt.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  57. Hazeena SH, Nair Salini C, Sindhu R et al (2019) Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol. Bioresour Technol 278:145–149. https://doi.org/10.1016/j.biortech.2019.01.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação do Aperfeiçoamento de Pessoal do Ensino Superior (CAPES), Finance Code 001, and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for their financial support of this project and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antônio Záchia Ayub.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ourique, L.J., Rocha, C.C., Gomes, R.C.D. et al. Bioreactor production of 2,3-butanediol by Pantoea agglomerans using soybean hull acid hydrolysate as substrate. Bioprocess Biosyst Eng 43, 1689–1701 (2020). https://doi.org/10.1007/s00449-020-02362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02362-0

Keywords

Navigation