Skip to main content

Advertisement

Log in

On the mechanical response of the actomyosin cortex during cell indentations

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abidine Y, Laurent VM, Michel R, Duperray A, Verdier C (2015) Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential. Eur Phys J Plus 130(10):202. https://doi.org/10.1140/epjp/i2015-15202-6

    Article  Google Scholar 

  • Ahmed WW, Betz T (2015) Dynamic cross-links tune the solid–fluid behavior of living cells. Proc Natl Acad Sci 112(21):6527–6528. https://doi.org/10.1073/pnas.1507100112

    Article  Google Scholar 

  • Ananthakrishnan R, Guck J, Wottawah F, Schinkinger S, Lincoln B, Romeyke M, Moon T, Käs J (2006) Quantifying the contribution of actin networks to the elastic strength of fibroblasts. J Theor Biol 242(2):502–516

    MathSciNet  MATH  Google Scholar 

  • Aratyn-Schaus Y, Oakes PW, Gardel ML (2011) Dynamic and structural signatures of lamellar actomyosin force generation. Mol Biol Cell 22(8):1330–1339. https://doi.org/10.1091/mbc.e10-11-0891

    Article  Google Scholar 

  • Auth T, Safran SA, Gov NS (2007) Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation. New J Phys 9(11):430–430

    Google Scholar 

  • Bažant P, Oh BH (1986) Efficient numerical integration on the surface of a sphere. ZAMM J Appl Math Mech/Z Angew Math Mech 66(1):37–49. https://doi.org/10.1002/zamm.19860660108

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263. https://doi.org/10.1152/physrev.00018.2013

    Article  Google Scholar 

  • Broedersz CP, MacKintosh FC (2014) Modeling semiflexible polymer networks. Rev Mod Phys 86(3):995–1036. https://doi.org/10.1103/RevModPhys.86.995

    Article  Google Scholar 

  • Burlacu S, Janmey PA, Borejdo J (1992) Distribution of actin filament lengths measured by fluorescence microscopy. Am J Physiol 262(3 Pt 1):C569–C577. https://doi.org/10.1152/ajpcell.1992.262.3.C569

    Article  Google Scholar 

  • Caspi A, Elbaum M, Granek R, Lachish A, Zbaida D (1998) Semiflexible polymer network: a view from inside. Phys Rev Lett 80(5):1106–1109. https://doi.org/10.1103/PhysRevLett.80.1106

    Article  Google Scholar 

  • Chalut KJ, Paluch EK (2016) The actin cortex: a bridge between cell shape and function. Dev Cell 38(6):571–573

    Google Scholar 

  • Chaudhuri O, Koshy ST, da Cunha CB, Shin J-W, Verbeke CS, Allison KH, Mooney DJ (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13(10):970–978

    Google Scholar 

  • Chen B, Ji B, Gao H (2015) Modeling active mechanosensing in cell–matrix interactions. Ann Rev Biophys 44(1):1–32. https://doi.org/10.1146/annurev-biophys-051013-023102

    Article  Google Scholar 

  • Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F (2017) Cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 22–23:88–119

    Google Scholar 

  • Chim YH, Mason LM, Rath N, Olson MF, Tassieri M, Yin H (2018) A one-step procedure to probe the viscoelastic properties of cells by atomic force microscopy. Sci Rep 8(1):1–12

    Google Scholar 

  • Clark AG, Dierkes K, Paluch EK (2013) Monitoring actin cortex thickness in live cells. Biophys J 105(3):570–580

    Google Scholar 

  • Clark AG, Wartlick O, Salbreux G, Paluch EK (2014) Stresses at the cell surface during animal cell morphogenesis. Curr Biol 24(10):R484–94

    Google Scholar 

  • Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85(4):888–891. https://doi.org/10.1103/PhysRevLett.85.888

    Article  Google Scholar 

  • Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci 103(38):14015–14020

    Google Scholar 

  • Discher DE, Janmey P, Wang Y-l (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Google Scholar 

  • Diz-Muñoz A, Fletcher DA, Weiner OD (2013) Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 23(2):47–53. https://doi.org/10.1016/j.tcb.2012.09.006

    Article  Google Scholar 

  • Eghiaian F, Rigato A, Scheuring S (2015) Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys J 108(6):1330–1340

    Google Scholar 

  • Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Perez-Gonzalez C, Castro N, Zhu C, Trepat X, Roca-Cusachs P (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18(5):540

    Google Scholar 

  • Ennomani H, Letort G, Guérin C, Martiel J-L, Cao W, Nédélec F, De La Cruz EM, Théry M, Blanchoin L (2016) Architecture and connectivity govern actin network contractility. Curr Biol 26(5):616–626

    Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.87.148102

    Article  Google Scholar 

  • Ferreira JPS, Parente MPL, Natal Jorge RM (2018) Continuum mechanical model for cross-linked actin networks with contractile bundles. J Mech Phys Solids 110:100–117

    MathSciNet  Google Scholar 

  • Fischer-Friedrich E, Hyman AA, Jülicher F, Muller DJ, Helenius J (2014) Quantification of surface tension and internal pressure generated by single mitotic cells. Sci Rep 4(1):137–138

    Google Scholar 

  • Fouchard J, Bimbard C, Bufi N, Durand-Smet P, Proag A, Richert A, Cardoso O, Asnacios A (2014) Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions. Proc Natl Acad Sci USA 111(36):13075–13080

    Google Scholar 

  • Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003) Microrheology of entangled F-actin solutions. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.91.158302

    Article  Google Scholar 

  • Gardel ML, Nakamura F, Hartwig J, Crocker JC, Stossel TP, Weitz DA (2006) Stress-dependent elasticity of composite actin networks as a model for cell behavior. Phys Rev Lett 96(8):2038. https://doi.org/10.1103/PhysRevLett.96.088102

    Article  Google Scholar 

  • Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA (2006) Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci 103(6):1762–1767. https://doi.org/10.1073/pnas.0504777103

    Article  Google Scholar 

  • Gardel ML, Sabass B, Ji L, Danuser G, Schwarz US, Waterman CM (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol 183(6):999–1005

    Google Scholar 

  • Gardel ML, Kasza KE, Brangwynne CP, Liu J, Weitz DA (2008) Mechanical response of cytoskeletal networks. Biophys Tools Biol 89:487

    Google Scholar 

  • Gavara N (2017) A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80(1):75–84. https://doi.org/10.1002/jemt.22776

    Article  Google Scholar 

  • Gavara N, Chadwick RS (2016) Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging. Biomech Model Mechanobiol 15(3):511–523. https://doi.org/10.1007/s10237-015-0706-9

    Article  Google Scholar 

  • Guz N, Dokukin M, Kalaparthi V, Sokolov I (2014) If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 107(3):564–575

    Google Scholar 

  • Hai CM, Murphy RA (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol Cell Physiol 254(1):C99–C106

    Google Scholar 

  • Han F, Zhu C, Guo Q, Yang H, Li B (2016) Cellular modulation by the elasticity of biomaterials. J Mater Chem B 4(1):9–26

    Google Scholar 

  • Holzapfel GA, Ogden RW (2013) Elasticity of biopolymer filaments. Acta Biomater 9(7):7320–7325. https://doi.org/10.1016/j.actbio.2013.03.001

    Article  Google Scholar 

  • Hui TH, Zhou ZL, Qian J, Lin Y, Ngan AHW, Gao H (2014) Volumetric deformation of live cells induced by pressure-activated cross-membrane ion transport. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.113.118101

    Article  Google Scholar 

  • Humphrey D, Duggan C, Saha D, Smith D, Kas J (2002) Active fluidization of polymer networks through molecular motors. Nature 416(6879):413–416. https://doi.org/10.1038/416413

    Article  Google Scholar 

  • Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape—the rise of mechanotransduction in cell biology. Nature 15(12):825–833

    Google Scholar 

  • Janmey PA, Hvidt S, Lamb J, Stossel TP (1990) Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345(6270):89–92. https://doi.org/10.1038/345089a0

    Article  Google Scholar 

  • Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19(1):101–107

    Google Scholar 

  • Kawamura M, Maruyama K (1970) Electron microscopic particle length of F-actin polymerized in vitro. J Biochem 67(3):437–457

    Google Scholar 

  • Keren K, Yam PT, Kinkhabwala A, Mogilner A, Theriot JA (2009) Intracellular fluid flow in rapidly moving cells. Nat Cell Biol 11(10):1219–1224

    Google Scholar 

  • Koenderink GH, Paluch EK (2018) Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol 50:79–85. https://doi.org/10.1016/j.ceb.2018.01.015

    Article  Google Scholar 

  • Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci 106(36):15192–15197

    Google Scholar 

  • Labouesse C, Verkhovsky AB, Meister J-J, Gabella C, Vianay B (2015) Cell shape dynamics reveal balance of elasticity and contractility in peripheral arcs. Biophys J 108(10):2437–2447

    Google Scholar 

  • Labouesse C, Gabella C, Meister J-J, Vianay B, Verkhovsky AB (2016) Microsurgery-aided in-situ force probing reveals extensibility and viscoelastic properties of individual stress fibers. Sci Rep 6(1):23722

    Google Scholar 

  • Lecuit T, Lenne P-F (2007) Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 8(8):633–644

    Google Scholar 

  • Lee H, Ferrer JM, Nakamura F, Lang MJ, Kamm RD (2010) Passive and active microrheology for cross-linked F-actin networks in vitro. Acta Biomater 6(4):1207–1218

    Google Scholar 

  • Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22(2):61–81

    Google Scholar 

  • Li S, Guan JL, Chien S (2005) Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng 7(1):105–150. https://doi.org/10.1146/annurev.bioeng.7.060804.100340

    Article  Google Scholar 

  • Lieleg O, Claessens MMAE, Bausch AR (2010) Structure and dynamics of cross-linked actin networks. Soft Matter 6(2):218–225

    Google Scholar 

  • Liu X, Pollack G (2002) Mechanics of F-actin characterized with microfabricated cantilevers. Biophys J 83(5):2705–2715

    Google Scholar 

  • Liu X, Pollack GH (2004) Stepwise sliding of single actin and myosin filaments. Biophys J 86(1):353–358

    Google Scholar 

  • Louvard D, Schroer T (2002) Cell structure and dynamics. Curr Opin Cell Biol 14(1):15–17

    Google Scholar 

  • Miehe C, Göktepe S (2005) A micro–macro approach to rubber-like materials. Part II: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53(10):2231–2258

    MathSciNet  MATH  Google Scholar 

  • Mitchison TJ, Charras GT, Mahadevan L (2008) Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin Cell Dev Biol 19(3):215–223

    Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373. https://doi.org/10.1126/science.1134404

    Article  Google Scholar 

  • Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261

    Google Scholar 

  • Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19(17):R762–R771

    Google Scholar 

  • Monteiro E, Yvonnet J, He QC, Cardoso O, Asnacios A (2010) Analyzing the interplay between single cell rheology and force generation through large deformation finite element models. Biomech Model Mechanobiol 10(6):813–830

    Google Scholar 

  • Mulla Y, Koenderink GH (2018) Crosslinker mobility weakens transient polymer networks. arXiv.org. arxiv:1805.12431v1

  • Müller KW, Bruinsma RF, Lieleg O, Bausch AR, Wall WA, Levine AJ (2014) Rheology of semiflexible bundle networks with transient linkers. Phys Rev Lett 112(23):955–5. https://doi.org/10.1103/PhysRevLett.112.238102

    Article  Google Scholar 

  • Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nature 16(8):486–498. https://doi.org/10.1038/nrm4012

    Article  Google Scholar 

  • Murtada S-I, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9(6):749–762. https://doi.org/10.1007/s10237-010-0211-0

    Article  Google Scholar 

  • Nawaz S, Sánchez P, Bodensiek K, Li S, Simons M, Schaap IAT (2012) Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS ONE 7(9):e45297. https://doi.org/10.1371/journal.pone.0045297

    Article  Google Scholar 

  • Palmer JS, Boyce MC (2008) Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomater 4(3):597–612

    Google Scholar 

  • Perepelyuk M, Chin L, Cao X, van Oosten A, Shenoy VB, Janmey PA, Wells RG (2016) Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS ONE 11(1):e0146588. https://doi.org/10.1371/journal.pone.0146588

    Article  Google Scholar 

  • Podolski JL, Steck TL (1990) Length distribution of F-actin in dictyostelium discoideum. J Biol Chem 265(3):1312–1318

    Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Google Scholar 

  • Rafelski SM, Theriot JA (2004) Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics. Annu Rev Biochem 73(1):209–239. https://doi.org/10.1146/annurev.biochem.73.011303.073844

    Article  Google Scholar 

  • Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP (2013) Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. Proc Natl Acad Sci 110(15):E1361–E1370. https://doi.org/10.1073/pnas.1220723110

    Article  Google Scholar 

  • Rodriguez ML, McGarry PJ, Sniadecki NJ (2013) Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev 65(6):0801

    Google Scholar 

  • Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22(10):536–545. https://doi.org/10.1016/j.tcb.2012.07.001

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Google Scholar 

  • Schlueter DK, Ramis-Conde I, Chaplain MAJ (2015) Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations. J R Soc Interface. https://doi.org/10.1098/rsif.2014.1080

    Article  Google Scholar 

  • Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14(1):305–338

    Google Scholar 

  • Schroer AK, Merryman WD (2015) Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. J Cell Sci 128(10):1865–1875

    Google Scholar 

  • Sept D, Xu J, Pollard TD, Andrew McCammon J (1999) Annealing accounts for the length of actin filaments formed by spontaneous polymerization. Biophys J 77(6):2911–2919

    Google Scholar 

  • Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2004) Nonlinear elasticity in biological gels. arXiv.org. http://arxiv.org/abs/cond-mat/0406016v1

  • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal P, Pinter J, Pajerowski JD, Spinler K, Shin J-W, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Mol Biol Cell 24. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=mekentosj&SrcApp=Papers&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000209348703110

  • Systemès D (2012) ABAQUS v6.12 documentation. Dassault Systèmes, Providence

    Google Scholar 

  • Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, Singh R, Khanna N, Belmont AS, Wang N (2016) Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 15(12):1287–1296

    Google Scholar 

  • Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci 100(4):1484–1489

    Google Scholar 

  • Tang DD (2018) The dynamic actin cytoskeleton in smooth muscle. Adv Pharmacol (San Diego, Calif.) 81:1–38

    Google Scholar 

  • Tharmann R, Claessens MMAE, Bausch AR (2007) Viscoelasticity of isotropically cross-linked actin networks. Phys Rev Lett 98(8):088103. https://doi.org/10.1103/PhysRevLett.98.088103

    Article  Google Scholar 

  • Trichet L, Le Digabel J, Hawkins RJ, Vedula SRK, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci 109(18):6933–6938. https://doi.org/10.1073/pnas.1117810109

    Article  Google Scholar 

  • Unterberger MJ, Schmoller KM, Bausch AR, Holzapfel GA (2013) A new approach to model cross-linked actin networks: multi-scale continuum formulation and computational analysis. J Mech Behav Biomed Mater 22:95–114

    Google Scholar 

  • van Oosten ASG, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6(1):19270

    Google Scholar 

  • Weafer PP, Ronan W, Jarvis SP, McGarry JP (2013) Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression. Bull Math Biol 75(8):1284–1303. https://doi.org/10.1007/s11538-013-9812-y/fulltext.html

    Article  MathSciNet  MATH  Google Scholar 

  • Wu P-H, Aroush DR-B, Asnacios A, Chen W-C, Dokukin ME, Doss BL, Durand-Smet P, Ekpenyong A, Guck J, Guz NV, Janmey PA, Lee JSH, Moore NM, Ott A, Poh Y-C, Ros R, Sander M, Sokolov I, Staunton JR, Wang N, Whyte G, Wirtz D (2018) A comparison of methods to assess cell mechanical properties. Nat Methods. https://doi.org/10.1038/s41592-018-0015-1

    Article  Google Scholar 

  • Xia S, Kanchanawong P (2017) Nanoscale mechanobiology of cell adhesions. Semin Cell Dev Biol 71:53–67

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Portuguese Foundation of Science under Grant SFRH/BD/107860/2015.

Author information

Authors and Affiliations

Authors

Contributions

JF conducted the AFM experiments, performed data analysis, ran the simulations and wrote the results and discussion. MK designed and produced cellular samples. MM built the 3D geometric models. MP and RN contributed to the discussion of the manuscript. MD supervised and approved the cellular experiments, contributed to the AFM financing and to the writing of the manuscript.

Corresponding author

Correspondence to João P. S. Ferreira.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We performed FE simulations of tip–cell contact in a simplified geometry with a flat surface to assess the usability of geometric extraction during AFM scans (Fig. 15). The cell is considered as a 3D cuboidal body with height of \({3.3}\,{\upmu \hbox {m}}\), length of \({20}\,{\upmu \hbox {m}}\) and width of \({20}\,{\upmu \hbox {m}}\). All the remaining considerations regarding the initial and boundary conditions and material parameters were kept the same.

Fig. 15
figure 15

Simulated force curves obtained from the AFM indentations with a spherical tip in a cell surface (from AFM scan) and in a flat surface

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, J.P.S., Kuang, M., Marques, M. et al. On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 19, 2061–2079 (2020). https://doi.org/10.1007/s10237-020-01324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-020-01324-5

Keywords

Navigation