Skip to main content
Log in

Synthesis of mono- and bis-spirooxindole derivatives “on water” using double salt of aluminum sulfate–sulfuric acid as a reusable catalyst

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The preparation of double salt of aluminum sulfate–sulfuric acid (Al4(SO4)6·(H2SO4)·24H2O) by the reaction of aluminum sulfate and sulfuric acid in water is described. Aluminum sulfate–sulfuric acid is characterized via some spectroscopic and microscopic techniques such as infrared spectroscopy (IR), X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which corroborated the structure of the double salt. This double salt is soluble in water and insoluble in organic solvents. It was employed as a new catalyst for the synthesis of spirooxindole compounds on water with good to excellent yields. The double salt could be recycled and reused without appreciable loss of activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Salehi P, Zolfigol MA, Shirini F, Baghbanzadeh M (2006) Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Curr Org Chem 10:2171–2189. https://doi.org/10.2174/138527206778742650

    Article  CAS  Google Scholar 

  2. Zolfigol MA, Shirini F, Salehi P, Abedini M (2008) Applications of some metal hydrogen sulfates in organic transformations. Curr Org Chem 12:183–202. https://doi.org/10.2174/138527208783497475

    Article  Google Scholar 

  3. Niknam K, Zolfigol MA, Sadabadi T, Nejati A (2006) Preparation of indolylmethanes catalyzed by metal hydrogen sulfates. J Iran Chem Soc 3:318–322. https://doi.org/10.1007/BF03245953

    Article  CAS  Google Scholar 

  4. Niknam K, Zolfigol MA, Dehghani M (2008) Friedlander quinoline synthesis catalyzed by M(HSO4)n (M=Al, Mg, Ca) under solvent-free conditions. Heterocycles 75:2513–2521. https://doi.org/10.3987/COM-08-11442

    Article  CAS  Google Scholar 

  5. Siddiqui ZN, Farooq F (2012) Silica supported sodium hydrogen sulfate (NaHSO4–SiO2): a novel, green catalyst for synthesis of pyrazole and pyranyl pyridine derivatives under solvent-free condition via heterocyclic β-enaminones. J Mol Catal A Chem 363:451–459. https://doi.org/10.1016/j.molcata.2012.07.024

    Article  CAS  Google Scholar 

  6. Henry JL, King GB (1949) The system aluminum sulfate-sulfuric acid–water at 60°. J Am Chem Soc 71:1142–1144. https://doi.org/10.1021/ja01172a002

    Article  CAS  Google Scholar 

  7. Taylor D, Scott R (1951) Solid phase determinations in the system aluminium sulphate/sulphuric acid/water using tracer technique. Nature 168:520. https://doi.org/10.1038/168520a0

    Article  CAS  Google Scholar 

  8. Khairna BJ, Chaudhari BR (2017) Aluminium sulphate in PEG as a green recyclable homogeneous catalytic system to synthesis of amidoalkyl naphthol. J Chem Pharm Res 9:145–150

    CAS  Google Scholar 

  9. Ziyaei Halimehjani A, Hooshmand SE, Vali Shamiri E (2015) Synthesis and characterization of a tetracationic acidic organic salt and its application in the synthesis of bis(indolyl)methanes and protection of carbonyl compounds. RSC Adv 5:21772–21777. https://doi.org/10.1039/c5ra01422k

    Article  Google Scholar 

  10. Nikpassand M, Zare Fekri L (2015) Aluminum hydrogen sulfate as a green catalyst for the solvent-free synthesis of pyrazolopyridines. Russ J Gen Chem 85:1179–1183. https://doi.org/10.1134/S1070363215050308

    Article  CAS  Google Scholar 

  11. Zeng D, Zhang Q, Chen S, Liu S, Wang G (2016) Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids. Micropor Mesopor Mat 219:54–58. https://doi.org/10.1016/j.micromeso.2015.07.028

    Article  CAS  Google Scholar 

  12. Yang G-P, Wu X, Yu B, Hu C-W (2019) Ionic liquid from vitamin B1 analogue and heteropolyacid: a recyclable heterogeneous catalyst for dehydrative coupling in organic carbonate. ACS Sustain Chem Eng 7:3727–3732. https://doi.org/10.1021/acssuschemeng.8b06445

    Article  CAS  Google Scholar 

  13. El-Harairy A, Yiliqi LB, Vaccaro L, Li M, Gu Y (2019) A sulfone-containing imidazolium-based Brønsted acid ionic liquid catalyst enables replacing dipolar aprotic solvents with butyl acetate. Adv Synth Catal 361:3342–3350. https://doi.org/10.1002/adsc.201900246

    Article  CAS  Google Scholar 

  14. Miao C, Hou Q, Wen Y, Han F, Li Z, Yang L, Xia C-G (2019) Long-chained acidic ionic liquids-catalyzed cyclization of 2-substituted aminoaromatics with β-diketones: a metal-free strategy to construct benzoazoles. ACS Sustain Chem Eng 7:12008–12013. https://doi.org/10.1021/acssuschemeng.9b00497

    Article  CAS  Google Scholar 

  15. El-Harairy A, Yiliqi YM, Fan W, Popowycz F, Queneau Y, Li M, Gu Y (2019) Novel Non-toxic and non-hazardous solvent systems for the chemistry of indoles: use of a sulfone-containing Brønsted acid ionic liquid catalyst in butyl acetate. Chem Cat Chem 11:4403–4410. https://doi.org/10.1002/cctc.201900784

    Article  CAS  Google Scholar 

  16. Yang G-P, Jiang N, Huang XQ, Yu B, Hu C-W (2019) Non-corrosive heteropolyacid-based recyclable ionic liquid catalyzed direct dehydrative coupling of alcohols with alcohols or alkenes. Mol Catal 468:80–85. https://doi.org/10.1016/j.mcat.2019.02.019

    Article  CAS  Google Scholar 

  17. Ahluwalia VK, Varma R (2009) Green solvents for organic synthesis. Alpha Science International, Oxford

    Google Scholar 

  18. Dunn PJ (2012) The importance of green chemistry in process research and development. Chem Soc Rev 41: 1452-1461. https://doi.org/10.1039/C1CS15041C

    Article  CAS  PubMed  Google Scholar 

  19. Butler RN, Coyne AG (2010) Water: nature’s reaction enforcer-comparative effects for organic synthesis “in-water” and “on-water”. Chem Rev 110:6302–6337. https://doi.org/10.1021/cr100162c

    Article  CAS  PubMed  Google Scholar 

  20. Gawande MB, Bonifácio VDB, Luque R, Brancoa PS, Varma RS (2013) Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem Soc Rev 42:5522–5551. https://doi.org/10.1039/C3CS60025D

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y-C, Wang JL, Burgess KS, Zhang J-W, Zheng Q-M, Pu Y-D, Yan L-J, Chen X-B (2018) Green synthesis of new pyrrolidine-fused spirooxindoles via three-component domino reaction in EtOH/H2O. RSC Adv 8:5702–5713. https://doi.org/10.1039/c7ra13207g

    Article  CAS  Google Scholar 

  22. Brauch S, van Berkel SS, Westermann B (2013) Higher-order multicomponent reactions: beyond four reactants. Chem Soc Rev 42:4948–4962. https://doi.org/10.1039/C3CS35505E

    Article  CAS  PubMed  Google Scholar 

  23. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114:8323–8359. https://doi.org/10.1021/cr400615v

    Article  CAS  PubMed  Google Scholar 

  24. Shaabani A, Hooshmand SE (2016) Isocyanide and Meldrum's acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Adv 6:58142–58159. https://doi.org/10.1039/c6ra11701e

    Article  CAS  Google Scholar 

  25. Cui C-B, Kakeya H, Osada H (1996) Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 52:12651–12666. https://doi.org/10.1016/0040-4020(96)00737-5

    Article  CAS  Google Scholar 

  26. Palmisano G, Annunziata R, Papeo G, Sisti M (1996) Oxindole alkaloids. A novel non-biomimetic entry to (–)-Horsfiline. Tetrahedron Asymmetry 7:1–4. https://doi.org/10.1016/0957-4166(95)00406-8

    Article  CAS  Google Scholar 

  27. Da Silva JF, Garden SJ, Pinto AC (2001) The chemistry of isatins: a review from 1975 to 1999. J Braz Chem Soc 12:273–324. https://doi.org/10.1590/S0103-50532001000300002

    Article  Google Scholar 

  28. Wong W-H, Lim PB, Chuah C-H (1996) Oxindole alkaloids from Alstonia macrophylla. Phytochemistry 41:313–315. https://doi.org/10.1016/0031-9422(96)81092-2

    Article  CAS  Google Scholar 

  29. Kates M, Marion L (1951) GELSEMINE: III. Reduction with lithium aluminum hydride. Can J Chem 29:37–45. https://doi.org/10.1139/v51-005

    Article  CAS  Google Scholar 

  30. Yu B, Yu D-Q, Liu H-M (2015) Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 97:673–698. https://doi.org/10.1016/j.ejmech.2014.06.056

    Article  CAS  PubMed  Google Scholar 

  31. Wu J-S, Zhang X, Zhang Y-L, Xie J-W (2015) Synthesis and antifungal activities of novel polyheterocyclic spirooxindole derivatives. Org Biomol Chem 13:4967–4975. https://doi.org/10.1039/C5OB00256G

    Article  CAS  PubMed  Google Scholar 

  32. Tiwari S, Pathak P, Sagar R (2016) Efficient synthesis of new 2,3-dihydrooxazole-spirooxindoles hybrids as antimicrobial agents. Bioorg Med Chem Lett 26:2513–2516. https://doi.org/10.1016/j.bmcl.2016.03.093

    Article  CAS  PubMed  Google Scholar 

  33. Haddad S, Boudriga S, Akhaja TN, Raval JP, Porzio F, Soldera A, Askri M, Knorr M, Rousselin Y, Kubicki MM (2015) A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: in vitro antibacterial, antifungal, antimalarial and antitubercular studies. New J Chem 39:520–528. https://doi.org/10.1039/C4NJ01008F

    Article  CAS  Google Scholar 

  34. Rouatbi F, Askri M, Nana F, Kirsch G, Sriram D, Yogeeswari P (2016) Synthesis of new spirooxindole derivatives through 1,3-dipolar cycloaddition of azomethine ylides and their antitubercular activity. Tetrahedron Lett 57:163–167. https://doi.org/10.1016/j.tetlet.2015.11.056

    Article  CAS  Google Scholar 

  35. Kumari G, Modi M, Gupta SK, Singh RK (2011) Rhodium(II) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring. Eur J Med Chem 46:1181–1188. https://doi.org/10.1016/j.ejmech.2011.01.037

    Article  CAS  PubMed  Google Scholar 

  36. Dabiri M, Bahramnejad M, Baghbanzadeh M (2009) Ammonium salt catalyzed multicomponent transformation: simple route to functionalized spirochromenes and spiroacridines. Tetrahedron 65:9443–9447. https://doi.org/10.1016/j.tet.2009.08.070

    Article  CAS  Google Scholar 

  37. Li Y, Chen H, Shi C, Shi D, Ji S (2010) Efficient one-pot synthesis of spirooxindole derivatives catalyzed by l-proline in aqueous medium. J Comb Chem 12:231–237. https://doi.org/10.1021/cc9001185

    Article  CAS  PubMed  Google Scholar 

  38. Jadidi K, Ghahremanzadeh R, Bazgir A (2009) Efficient Synthesis of Spiro[chromeno[2,3-d]pyrimidine-5,3′-indoline]-tetraones by a one-pot and three-component reaction. J Comb Chem 11:341–344. https://doi.org/10.1021/cc800167h

    Article  CAS  PubMed  Google Scholar 

  39. Ziarani GM, Badiei A, Mousavi S, Lashgari N, Shahbazi A (2012) Application of amino-functionalized SBA-15 type mesoporous silica in one-pot synthesis of spirooxindoles. Chin J Catal 33:1832–1839. https://doi.org/10.1016/S1872-2067(11)60456-7

    Article  CAS  Google Scholar 

  40. Sadeghi B, Lasemi Z, Azimi R (2015) One-pot three-component synthesis of spirooxindoles catalyzed by nano Ag/kaolin. Orient J Chem 31:1175–1179. https://doi.org/10.13005/ojc/310272

    Article  CAS  Google Scholar 

  41. Saluja P, Aggarwal K, Khurana JM (2013) One-pot synthesis of biologically important spiro-2-amino-4H-pyrans, spiroacenaphthylenes, and spirooxindoles using DBU as a green and recyclable catalyst in aqueous medium. Synth Commun 43:3239–3246. https://doi.org/10.1080/00397911.2012.760130

    Article  CAS  Google Scholar 

  42. Karmakar B, Nayak A, Banerji J (2012) A clean and expedient synthesis of spirooxindoles in aqueous media catalyzed over nanocrystalline MgO. Tetrahedron Lett 53:5004–5007. https://doi.org/10.1016/j.tetlet.2012.07.030

    Article  CAS  Google Scholar 

  43. Niknam K, Abolpour P (2015) Synthesis of spirooxindole pyrimidines catalyzed by silica-bonded N-propyltriethylenetetramine as a recyclable solid base catalyst in aqueous medium. Monatsh Chem 146:683–690. https://doi.org/10.1007/s00706-014-1343-1

    Article  CAS  Google Scholar 

  44. Guo R-Y, Wang P, Wang G-D, Mo L-P, Zhang Z-H (2013) One-pot three-component synthesis of functionalized spirooxindoles in gluconic acid aqueous solution. Tetrahedron 69:2056–2061. https://doi.org/10.1016/j.tet.2012.12.081

    Article  CAS  Google Scholar 

  45. Gao S, Tsai CH, Tseng C, Yao C-F (2008) Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron 64:9143–9149. https://doi.org/10.1016/j.tet.2008.06.061

    Article  CAS  Google Scholar 

  46. Liu Z-Q, Xiang Z-W, Wu Q, Lin X-F (2013) Unexpected three-component domino synthesis of pyridin-2-ones catalyzed by promiscuous acylase in non-aqueous solvent. Biochimie 95:1462–1465. https://doi.org/10.1016/j.biochi.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  47. Safaei HR, Shekouhy M, Shirinfeshan A, Rahmanpur S (2012) CaCl2 as a bifunctional reusable catalyst: diversity-oriented synthesis of 4H-pyran library under ultrasonic irradiation. Mol Divers 16:669–683. https://doi.org/10.1007/s11030-012-9392-z

    Article  CAS  PubMed  Google Scholar 

  48. Dandia A, Jain AK, Bhati DS (2011) NaCl as a novel and green catalyst for the synthesis of biodynamic spiro heterocycles in water under sonication. Synth Commun 41:2905–2919. https://doi.org/10.1080/00397911.2010.515365

    Article  CAS  Google Scholar 

  49. Zhu S-L, Ji S-J, Zhang Y (2007) A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron 63:9365–9372. https://doi.org/10.1016/j.tet.2007.06.113

    Article  CAS  Google Scholar 

  50. Lashgari N, Ziarani GM, Badiei A, Zarezadeh-Mehrizi M (2014) Application of sulfonic acid functionalized SBA-15 as a new nanoporous acid catalyst in the green one-pot synthesis of spirooxindole-4H-pyrans. J Heterocycl Chem 51:1628–1633

    Article  CAS  Google Scholar 

  51. Satasia SP, Kalaria PN, Avalani JR, Raval DK (2014) An efficient approach for the synthesis of spirooxindole derivatives catalyzed by novel sulfated choline based heteropolyanion at room temperature. Tetrahedron 70:5763–5767. https://doi.org/10.1016/j.tet.2014.06.050

    Article  CAS  Google Scholar 

  52. Ghahremanzadeh R, Rashid Z, Zarnani AH, Naeimi H (2013) Synthesis of novel spirooxindoles in water by using MnFe2O4 nanoparticles as an efficient magnetically recoverable and reusable catalyst. Appl Catal A Gen 467:270–278. https://doi.org/10.1016/j.apcata.2013.07.029

    Article  CAS  Google Scholar 

  53. Thakur A, Tripathi M, Rajesh UC, Rawat DS (2013) Ethylenediammonium diformate (EDDF) in PEG600: an efficient ambiphilic novel catalytic system for the one-pot synthesis of 4H-pyrans via Knoevenagel condensation. RSC Adv 3:18142–18148. https://doi.org/10.1039/C3RA42410C

    Article  CAS  Google Scholar 

  54. Niknam K, Piran A, Karimi Z (2016) Synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] and spiro[indoline-3,4′-pyrano[2,3-c]chromene] derivatives using silica-bonded ionic liquids as a recyclable catalyst in aqueous medium. J Iran Chem Soc 13:859–871. https://doi.org/10.1007/s13738-015-0801-y

    Article  CAS  Google Scholar 

  55. Allahresani A, Taheri B, Naseri MA (2018) A green synthesis of spirooxindole derivatives catalyzed by SiO2@g-C3N4 nanocomposite. Res Chem Intermed 44:1173–1188. https://doi.org/10.1007/s11164-017-3160-8

    Article  CAS  Google Scholar 

  56. Agarwal S, Kidwai M, Nath M (2019) A facile and green pathway for one-pot multicomponent synthesis of functionalized spiroxyindoles using caffeinium hydrogen sulfate as a catalyst. ChemistrySelect 4:2135–2139. https://doi.org/10.1002/slct.201900121

    Article  CAS  Google Scholar 

  57. Bavadi M, Niknam K (2018) Synthesis of functionalized dihydro-2-oxopyrroles using graphene oxide as heterogeneous catalyst. Mol Divers 22:561–573. https://doi.org/10.1007/s11030-017-9809-9

    Article  CAS  PubMed  Google Scholar 

  58. Mamaghani M, Tabatabaeian K, Pourshiva M, Nia RH (2015) Rapid and efficient synthesis of spiro-oxindoles using Fe3+-montmorillonite under ultrasonic irradiation. J Chem Res 39:314–317. https://doi.org/10.3184/174751915X14317079958231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Persian Gulf University Research Council for partial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khodabakhsh Niknam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashkar, M., Bavadi, M., Ghaderi, E. et al. Synthesis of mono- and bis-spirooxindole derivatives “on water” using double salt of aluminum sulfate–sulfuric acid as a reusable catalyst. Mol Divers 25, 2001–2015 (2021). https://doi.org/10.1007/s11030-020-10091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10091-5

Keywords

Navigation