Skip to main content

Advertisement

Log in

Effect of Static Magnetic Field on the Evolution of Residual Stress and Microstructure of Laser Remelted Inconel 718 Superalloy

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

As a typical additive manufacturing technique, direct energy deposition is restricted from further application due to the presence of residual stress and the structural deformation. Thus, minimizing the residual stress plays a crucial role in additive manufacturing. In this work, a transverse static magnetic field is introduced in the laser remelting of Inconel 718 superalloy to investigate the effects on residual stress and microstructural change. The x-ray diffraction technique was used to examine the residual stress variation. Optical microscope and scanning electron microscope were applied to observe the microstructure evolution. It was found that the compressive residual stress of the remelted region was notably reduced from 392.50 to 315.45 MPa under the effect of the magnetic field of 0.55 T. Furthermore, it was observed that the average dendrite spacing was reduced by about 32% under the magnetic field. During the laser remelting process, the imposed electromagnetic force minimized the flow field within the molten pool, inhibiting the heat transfer and minimizing the cooling rate. These directly reduced the residual stresses. Based on research findings, the magnetic field can be a potential method to eliminate the residual stress in laser additive manufacturing components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi, Z. Ren, H. Liao, and M. Liu, Mechanical and In Vitro Study of an Isotropic Ti6Al4 V Lattice Structure Fabricated Using Selective Laser Melting, J. Alloys Compd., 2019, 782, p 209-223

    CAS  Google Scholar 

  2. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components: Process, Structure And Properties, Prog. Mater. Sci., 2018, 92(Supplement C), p 112-224

    CAS  Google Scholar 

  3. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371-392

    CAS  Google Scholar 

  4. C.L. Qiu, N.J.E. Adkins, and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti-6Al-4 V, Mater. Sci. Eng. A Struct., 2013, 578, p 230-239

    CAS  Google Scholar 

  5. G.-H. Meng, H. Liu, M.-J. Liu, T. Xu, G.-J. Yang, C.-X. Li, and C.-J. Li, Highly Oxidation Resistant MCrAlY Bond Coats Prepared by Heat Treatment Under Low Oxygen Content, Surf. Coat. Technol., 2019, 368, p 192-201

    CAS  Google Scholar 

  6. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, and E. Toyserkani, A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties, Mater. Des., 2018, 144, p 98-128

    CAS  Google Scholar 

  7. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2013, 57(3), p 133-164

    Google Scholar 

  8. Q. Jia and D. Gu, Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties, J. Alloys Compd., 2014, 585, p 713-721

    CAS  Google Scholar 

  9. S. Luo, W. Huang, H. Yang, J. Yang, Z. Wang, and X. Zeng, Microstructural Evolution and Corrosion Behaviors of Inconel 718 Alloy Produced by Selective Laser Melting Following Different Heat Treatments, Addit. Manuf., 2019, 30, p 100875

    Google Scholar 

  10. W. Ma, Y. Xie, C. Chen, H. Fukanuma, J. Wang, Z. Ren, and R. Huang, Microstructural and Mechanical Properties of High-Performance Inconel 718 Alloy by Cold Spraying, J. Alloys Compd., 2019, 792, p 456-467

    CAS  Google Scholar 

  11. R. Vilar and A. Almeida, Repair and Manufacturing of Single Crystal Ni-Based Superalloys Components by Laser Powder Deposition—A Review, J. Laser Appl., 2015, 27(S1), p S17004

    Google Scholar 

  12. D. Zhang, Z. Feng, C. Wang, W. Wang, Z. Liu, and W. Niu, Comparison of Microstructures and Mechanical Properties of Inconel 718 Alloy Processed by Selective Laser Melting and Casting, Mater. Sci. Eng. A, 2018, 724, p 357-367

    CAS  Google Scholar 

  13. G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li, and G.F. Chen, Investigations of γ′, γ″ and δ Precipitates in Heat-Treated Inconel 718 Alloy Fabricated by Selective Laser Melting, Mater. Charact., 2018, 136, p 398-406

    CAS  Google Scholar 

  14. D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, and X.H. Wu, Influence of Post Heat Treatments on Anisotropy of Mechanical Behaviour and Microstructure of Hastelloy-X Parts Produced by Selective Laser Melting, Mater. Sci. Eng. A Struct., 2016, 667, p 42-53

    CAS  Google Scholar 

  15. I. Lopez-Galilea, B. Ruttert, J. He, T. Hammerschmidt, R. Drautz, B. Gault, and W. Theisen, Additive Manufacturing of CMSX-4 Ni-Base Superalloy by Selective Laser Melting: Influence of Processing Parameters and Heat Treatment, Addit. Manuf., 2019, 30, p 100874

    Google Scholar 

  16. J. Liang, Y. Liu, J. Li, Y. Zhou, and X. Sun, Epitaxial Growth and Oxidation Behavior of an Overlay Coating on a Ni-Base Single-Crystal Superalloy by Laser Cladding, J. Mater. Sci. Technol., 2019, 35(2), p 344-350

    Google Scholar 

  17. R.J. DiMelfi, P.G. Sanders, B. Hunter, J.A. Eastman, K.J. Sawley, K.H. Leong, J.M. Kramer, Mitigation of Subsurface Crack Propagation in Railroad Rails by Laser Surface Modification, in This Paper was Presented at the 1997 International Conference on Metallurgical Coatings and Thin Films, Session E1, held 21–25 April 1997, Town and Country Hotel, San Diego, CA, USA. Surf Coat Technol 106(1) (1998), pp 30-43

  18. B. Ahmad, S.O. van der Veen, M.E. Fitzpatrick, and H. Guo, Residual Stress Evaluation in Selective-Laser-Melting Additively Manufactured Titanium (Ti-6Al-4V) and Inconel 718 Using the Contour Method and Numerical Simulation, Addit. Manuf., 2018, 22, p 571-582

    CAS  Google Scholar 

  19. L. Parry, I.A. Ashcroft, and R.D. Wildman, Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation, Addit. Manuf., 2016, 12, p 1-15

    Google Scholar 

  20. C. Qiu, H. Chen, Q. Liu, S. Yue, and H. Wang, On the Solidification Behaviour and Cracking Origin of a Nickel-Based Superalloy During Selective Laser Melting, Mater. Charact., 2019, 148, p 330-344

    CAS  Google Scholar 

  21. Z. Shuangyin, L. Xin, C. Jing, and H. Weidong, Influence of Heat Treatment on Residual Stress of Ti-6Al-4V Alloy by Laser Solid Forming, Rare Met. Mater. Eng., 2009, 5, p 774-778

    Google Scholar 

  22. P. Farahmand and R. Kovacevic, An Experimental–Numerical Investigation of Heat Distribution and Stress Field in Single-and Multi-track Laser Cladding by a High-Power Direct Diode Laser, Opt. Laser Technol., 2014, 63, p 154-168

    CAS  Google Scholar 

  23. M. Labudovic, D. Hu, and R. Kovacevic, A Three Dimensional Model for Direct Laser Metal Powder Deposition and Rapid Prototyping, J. Mater. Sci., 2003, 38(1), p 35-49

    CAS  Google Scholar 

  24. E. Savitsky, R. Torchinova, and S. Turanov, Effect of Crystallization in Magnetic Field on the Structure and Magnetic Properties of Bi-Mn Alloys, J. Cryst. Growth, 1981, 52, p 519-523

    Google Scholar 

  25. A. Goetz and M.F. Hasler, The Thermoanalysis of Metal Single Crystals and a New Thermoelectric Effect of Bismuth Crystals Grown in Magnetic Fields, Phys. Rev., 1930, 36(12), p 1752

    CAS  Google Scholar 

  26. W. Tiller, K. Jackson, J. Rutter, and B. Chalmers, The Redistribution of Solute Atoms During the Solidification of Metals, Acta Metall., 1953, 1(4), p 428-437

    CAS  Google Scholar 

  27. X. Li, A. Gagnoud, Y. Fautrelle, Z. Ren, R. Moreau, Y. Zhang, and C. Esling, Dendrite Fragmentation and Columnar-to-Equiaxed Transition During Directional Solidification at Lower Growth Speed Under a Strong Magnetic Field, Acta Mater., 2012, 60(8), p 3321-3332

    CAS  Google Scholar 

  28. X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z. Ren, R. Moreau, Y. Zhang, and C. Esling, Columnar-to-Equiaxed Transitions in Al-Based Alloys During Directional Solidification Under a High Magnetic Field, J. Cryst. Growth, 2010, 312(2), p 267-272

    CAS  Google Scholar 

  29. G. Oreper and J. Szekely, The Effect of an Externally Imposed Magnetic Field on Buoyancy Driven Flow in a Rectangular Cavity, J. Cryst. Growth, 1983, 64(3), p 505-515

    CAS  Google Scholar 

  30. A. Witt, C.J. Herman, and H. Gatos, Czochralski-Type Crystal Growth in Transverse Magnetic Fields, J. Mater. Sci., 1970, 5(9), p 822-824

    CAS  Google Scholar 

  31. P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Modification of Interdendritic Convection by a Magnetic Field. Mater Sci Forum, Trans Tech Publ, 1996, pp. 235-240

  32. S.N. Tewari, R. Shah, and H. Song, Effect of Magnetic Field on the Microstructure and Macrosegregation in Directionally Solidified Pb-Sn Alloys, Metall. Mater. Trans. A, 1994, 25(7), p 1535-1544

    Google Scholar 

  33. J. Wang, Y. Fautrelle, Z. Ren, X. Li, H. Nguyen-Thi, N. Mangelinck-Noël, G. Salloum Abou Jaoude, Y. Zhong, I. Kaldre, and A. Bojarevics, Thermoelectric Magnetic Force Acting on the Solid During Directional Solidification Under a Static Magnetic Field, Appl. Phys. Lett., 2012, 101(25), p 251904

    Google Scholar 

  34. R. Moreau, O. Laskar, M. Tanaka, and D. Camel, Thermoelectric Magnetohydrodynamic Effects on Solidification of Metallic Alloys in the Dendritic Regime, Mater. Sci. Eng. A, 1993, 173(1-2), p 93-100

    Google Scholar 

  35. S. Kuroda, T. Fukushima, and S. Kitahara, Simultaneous Measurement of Coating Thickness and Deposition Stress During Thermal Spraying, Thin Solid Films, 1988, 164, p 157-163

    Google Scholar 

  36. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry, Thin Solid Films, 1997, 306(1), p 23-33

    CAS  Google Scholar 

  37. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401

    CAS  Google Scholar 

  38. J. Liu, R. Bolot, and S. Costil, Residual Stresses and Final Deformation of an Alumina Coating: Modeling and Measurement, Surf. Coat. Technol., 2015, 268, p 241-246

    CAS  Google Scholar 

  39. P. Royston, Approximating the Shapiro–Wilk W-Test for Non-normality, Stat. Comput. Control Eng. J., 1992, 2(3), p 117-119

    Google Scholar 

  40. C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, and H.C. Basoalto, On the Role of Thermal Fluid Dynamics into the Evolution of Porosity During Selective Laser Melting, Scr. Mater., 2015, 105, p 14-17

    CAS  Google Scholar 

  41. H. Harada, T. Toh, T. Ishii, K. Kaneko, and E. Takeuchi, Effect of Magnetic Field Conditions on the Electromagnetic Braking Efficiency, ISIJ Int., 2001, 41(10), p 1236-1244

    CAS  Google Scholar 

  42. J. Favier and D. Camel, Analytical and Experimental Study of Transport Processes During Directional Solidification and Crystal Growth, J. Cryst. Growth, 1986, 79(1-3), p 50-64

    CAS  Google Scholar 

  43. Y. Fautrelle, J. Wang, G. Salloum-Abou-Jaoude, L. Abou-Khalil, G. Reinhart, X. Li, Z.M. Ren, and H. Nguyen-Thi, Thermo-Electric-Magnetic Hydrodynamics in Solidification: In Situ Observations and Theory, JOM, 2018, 70(5), p 764-771

    CAS  Google Scholar 

  44. X.-H. Tian, W.-Y. Shi, T. Tang, L. Feng, Influence of Vertical Static Magnetic Field on Behavior of Rising Single Bubble in a Conductive Fluid. ISIJ Int (2015) ISIJINT-2015-493

  45. X. Li, A. Gagnoud, Z. Ren, Y. Fautrelle, and R. Moreau, Investigation of Thermoelectric Magnetic Convection and Its Effect on Solidification Structure During Directional Solidification Under a Low Axial Magnetic Field, Acta Mater., 2009, 57(7), p 2180-2197

    CAS  Google Scholar 

  46. H. Liu, W. Xuan, X. Xie, C. Li, J. Wang, J. Yu, X. Li, Y. Zhong, and Z. Ren, Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni 3 Al Alloy Under an Axial Magnetic Field, Metall. Mater. Trans. A, 2017, 48(9), p 4193-4203

    CAS  Google Scholar 

  47. S. Eckert, P.A. Nikrityuk, D. Räbiger, K. Eckert, and G. Gerbeth, Efficient Melt Stirring Using Pulse Sequences of a Rotating Magnetic Field: Part I. Flow Field in a Liquid Metal Column, Metall. Mater. Trans. B, 2007, 38(6), p 977-988

    Google Scholar 

  48. W. Xuan, Z. Ren, and C. Li, Effect of a High Magnetic Field on Microstructures of Ni-Based Superalloy During Directional Solidification, J. Alloys Compd., 2015, 620, p 10-17

    CAS  Google Scholar 

  49. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Natural Science Foundation of China (Nos. 51604171, 51690162 and 51701112), the Shanghai Science and Technology Committee (Nos. 17JC1400602 and 19DZ1100704), Shanghai Sailing Program (Grant Nos. 19YF1415900), Chinese National Science and Technology Major Project “Aeroengine and Gas Turbine” (2017-VII-0008-0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyue Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on Advanced Residual Stress Analysis in Thermal Spray and Cold Spray Processes. This issue was organized by Dr. Vladimir Luzin, Australian Centre for Neutron Scattering; Dr. Seiji Kuroda, National Institute of Materials Science; Dr. Shuo Yin, Trinity College Dublin; and Dr. Andrew Ang, Swinburne University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Chen, C., Shuai, S. et al. Effect of Static Magnetic Field on the Evolution of Residual Stress and Microstructure of Laser Remelted Inconel 718 Superalloy. J Therm Spray Tech 29, 1410–1423 (2020). https://doi.org/10.1007/s11666-020-01039-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01039-0

Keywords

Navigation