Skip to main content

Advertisement

Log in

Production of Chinese rosy bitterling offspring derived from frozen and vitrified whole testis by spermatogonial transplantation

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Bitterling is a small cyprinid fish facing an increasing risk of extinction owing to habitat destruction and decreasing freshwater mussel population that are used as their spawning substrates. Owing to their large size and high yolk contents, methods for cryopreservation of their eggs or embryos, which is a promising method for long-term preservation of their genetic resources, are still not available. We conducted this study to evaluate the feasibility of gamete production by transplanting cryopreserved testicular cells into germ cell–less recipients that were produced by knockdown of dead end gene. Immature testes isolated from recessive albino Chinese rosy bitterlings were cryopreserved by slow freezing or vitrification. Approximately 3000 slow-frozen or vitrified cells were transplanted into the peritoneal cavity of 4-day-old germ cell–less wild-type Chinese rosy bitterlings. We observed no significant differences in the incorporation rates of the slow-frozen and vitrified cells into the genital ridges of recipients compared with those of freshly prepared cells. When the recipients matured, almost half of the male or female recipients that received freshly prepared, slow-frozen, or vitrified cells produced gametes derived from donor cells, with no significant differences in their fecundity among the 3 groups. Moreover, fertilization of the resulting eggs and sperm produced donor-derived offspring exhibiting the albino phenotype. Therefore, the abovementioned methods could be used as a powerful and practical method for long-term preservation of bitterling genetic resources for biotic conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103

    CAS  PubMed  Google Scholar 

  • Ballou JD (1992) Potential contribution of cryopreserved germ plasm to the preservation of genetic diversity and conservation of endangered species in captivity. Cryobiology 29:19–25

    CAS  PubMed  Google Scholar 

  • Berejnov V, Husseini NS, Alsaied OA, Thorne RE (2006) Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions. J Appl Crystallogr 39:244–251

    CAS  Google Scholar 

  • Billard R (1986) Spermatogenesis and spermatology of some teleost fish species. Reprod Nutr Dev 26:877–920

    Google Scholar 

  • Brown KH, Thorgaard GH (2002) Mitochondrial and nuclear inheritance in an androgenetic line of rainbow trout, Oncorhynchus mykiss. Aquaculture 204:323–335

    CAS  Google Scholar 

  • Chang CH, Li F, Shao KT, Lin YS, Morosawa T, Kim S, Koo H, Kim W, Lee JS, He S, Smith C, Reichard M, Miya M, Sado T, Uehara K, Lavoué S, Chen WJ, Mayden RL (2014) Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species. Mol Phylogenet Evol 81:182–194

    PubMed  Google Scholar 

  • Christie MR, Marine ML, French RA, Blouin MS (2012) Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci U S A 109:238–242

    CAS  PubMed  Google Scholar 

  • Franěk R, Marinović Z, Lujić J, Urbányi B, Fučíková M, Kašpar V, Pšenička M, Horváth Á (2019) Cryopreservation and transplantation of common carp spermatogonia. PLoS One 14:e0205481

    PubMed  PubMed Central  Google Scholar 

  • Froese R, Pauly D. FishBase. http://www.fishbase.org/search.php. Accessed 12 February 2019

  • Grunina AS, Recoubratsky AV, Tsvetkova LI, Barmintsev VA (2006) Investigation on dispermic androgenesis in sturgeon fish. The first successful production of androgenetic sturgeons with cryopreserved sperm. Int J Refrig 29:379–386

    CAS  Google Scholar 

  • Hagedorn M, Kleinhans FW, Artemov D, Pilatus U (1998) Characterization of a major permeability barrier in the zebrafish embryo. Biol Reprod 59:1240–1250

    CAS  PubMed  Google Scholar 

  • Hagedorn M, Lance SL, Fonseca DM, Kleinhans FW, Artimov D, Fleischer R, Hoque AT, Hamilton MB, Pukazhenthi BS (2002) Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation. Biol Reprod 67:961–966

    CAS  PubMed  Google Scholar 

  • Hagedorn MM, Daly JP, Carter VL, Cole KS, Jaafar Z, Lager CVA, Parenti LR (2018) Cryopreservation of fish spermatogonial cells: the future of natural history collections. Sci Rep 8:6149

    PubMed  PubMed Central  Google Scholar 

  • Hagiwara T (2008) The invasion of Japan by an exotic bitterling, Acheilognathus macropterus, and its effect. In: Sengupta M, Dalwani R (eds) Proceedings of Taal2007: therapeutic 12th World Lake Conference 1082–1087

  • Hamasaki M, Takeuchi Y, Yazawa R, Yoshikawa S, Kadomura K, Yamada T, Miyaki K, Kikuchi K, Yoshizaki G (2017) Production of tiger puffer Takifugu rubripes offspring from triploid grass puffer Takifugu niphobles parents. Mar Biotechnol (NY) 19:579–591

    CAS  Google Scholar 

  • Higaki S, Todo T, Teshima R, Tooyama I, Fujioka Y, Sakai N, Takada T (2018) Cryopreservation of male and female gonial cells by vitrification in the critically endangered cyprinid honmoroko Gnathopogon caerulescens. Fish Physiol Biochem 44:503–513

    CAS  PubMed  Google Scholar 

  • IUCN Red List of Threatened Species. www.iucnredlist.org. Accessed 10 February 2019

  • Japanese ministry of the environment. Biodiversity Center of Japan, Japan integrated biodiversity information system. https://www.env.go.jp/press/files/jp/110615.pdf. Accessed 10 July 2019

  • Johnston LA, Lacy RC (1995) Genome resource banking for species conservation: selection of sperm donors. Cryobiology 32:68–77

    CAS  PubMed  Google Scholar 

  • Katano O, Matsuzaki SS (2012) In: Nakano S, Yahara T, Nakashizuka T. (eds) the biodiversity observation network in the Asia-Pacific region. Ecological research Monographs. Springer, Tokyo

  • Kawamura K (1998) Sex determination system of the rosy bitterling, Rhodeus ocellatus ocellatus. Environ Biol Fish 52:251–260

    Google Scholar 

  • Kawamura K, Hosoya K, Matsuda M (1998) Transparent-scaled variant of the rosy bitterling, Rhodeus ocellatus ocellatus (Teleostei: Cyprinidae). Zool Sci 15:425–431

    CAS  PubMed  Google Scholar 

  • Kobayashi J, Ueda T (1988) Japanese river foundation. https://www.kasen.or.jp/jyosei/tabid204.html. Accessed 28 October 2019

  • Komen H, Thorgaard GH (2007) Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture 269:1–4

    Google Scholar 

  • Kubota H, Watanabe K (2003) Genetic diversity in wild and reared populations of the Japanese bitterling Tanakia tanago (Cyprinidae). Ichthyol Res 50:123–128

    Google Scholar 

  • Lee S, Yoshizaki G (2016) Successful cryopreservation of spermatogonia in critically endangered Manchurian trout (Brachymystax lenok). Cryobiology 72:165–168

    CAS  PubMed  Google Scholar 

  • Lee S, Iwasaki Y, Shikina S, Yoshizaki G (2013) Generation of functional eggs and sperm from cryopreserved whole testes. Proc Natl Acad Sci U S A 110:1640–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Seki S, Katayama N, Yoshizaki G (2015) Production of viable trout offspring derived from frozen whole fish. Sci Rep 5:16045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Iwasaki Y, Yoshizaki G (2016a) Long-term (5 years) cryopreserved spermatogonia have high capacity to generate functional gametes via interspecies transplantation in salmonids. Cryobiology 73:286–290

    PubMed  Google Scholar 

  • Lee S, Katayama N, Yoshizaki G (2016b) Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells. Biochem Biophys Res Commun 478:1478–1483

    CAS  PubMed  Google Scholar 

  • Li F, Liao TY, Arai R, Zhao L (2017) Sinorhodeus microlepis, a new genus and species of bitterling from China (Teleostei: Cyprinidae: Acheilognathinae). Zootaxa 4353:69–88

    PubMed  Google Scholar 

  • Lujić J, Marinović Z, Sušnik Bajec S, Djurdjevič I, Kása E, Urbányi B, Horváth Á (2017) First successful vitrification of salmonid ovarian tissue. Cryobiology 76:154–157

    PubMed  Google Scholar 

  • Marinović Z, Li Q, Lujić J, Iwasaki Y, Csenki Z, Urbányi B, Yoshizaki G, Horváth Á (2019) Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Sci Rep 9:13861

    PubMed  PubMed Central  Google Scholar 

  • Mazur P, Leibo SP, Seidel GE Jr (2008) Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod 78:2–12

    CAS  PubMed  Google Scholar 

  • Nagoya H, Kawamura K, Ohta H (2010) Production of androgenetic amago salmon Oncorhynchus masou ishikawae with dispermy fertilization. Fish Sci 76:305–313

    CAS  Google Scholar 

  • Octavera A, Yoshizaki G (2019) Production of donor-derived offspring by allogeneic transplantation of spermatogonia in Chinese rosy bitterling†. Biol Reprod 100:1108–1117

    PubMed  Google Scholar 

  • Ohta H, Kawamura K, Unuma T, Takegoshi Y (2001) Cryopreservation of the sperm of the Japanese bitterling. J Fish Biol 58:670–681

    CAS  Google Scholar 

  • Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci U S A 103:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G (2007) Production of trout offspring from triploid salmon parents. Science 317:1517

    CAS  PubMed  Google Scholar 

  • Saito T, Goto-Kazeto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78:159–166

    CAS  PubMed  Google Scholar 

  • Saitoh K, Shindo K, Fujimoto Y, Takahashi K, Shimada T (2016) Mitochondrial genotyping of an endangered bitterling Acheilognathus typus (Cyprinidae). ZooKeys 623:131–141

    Google Scholar 

  • Saitoh K, Suzuki N, Ozaki M, Ishii K, Sado T, Morosawa T, Tsunagawa T, Tsuchiya M (2017) Natural habitats uncovered? – genetic structure of known and newly found localities of the endangered bitterling Pseudorhodeus tanago (Cyprinidae). Nat Conserv 17:19–33

    Google Scholar 

  • Scheerer PD, Thorgaard GH, Allendorf FW (1991) Genetic analysis of androgenetic rainbow trout. J Exp Zool 260:382–390

    CAS  PubMed  Google Scholar 

  • Seki S, Kusano K, Lee S, Iwasaki Y, Yagisawa M, Ishida M, Hiratsuka T, Sasado T, Naruse K, Yoshizaki G (2017) Production of the medaka derived from vitrified whole testes by germ cell transplantation. Sci Rep 7:43185

    PubMed  PubMed Central  Google Scholar 

  • Smith C, Reichard M, Jurajda P, Przybylski M (2004) The reproductive ecology of the European bitterling (Rhodeus sericeus). J Zool 262:107–124

    Google Scholar 

  • Takeuchi Y, Higuchi K, Yatabe T, Miwa M, Yoshizaki G (2009) Development of spermatogonial cell transplantation in Nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol Reprod 81:1055–1063

    CAS  PubMed  Google Scholar 

  • Ueda T, Aoki K (1995) The possibility of induction of androgenetic haploid embryos by an application of cold-shock shortly after fertilization in bitterling. Nippon Suisan Gakkaishi 61:245–246

    Google Scholar 

  • Van Damme DV, Bogutskaya N, Hoffmann RC, Smith C (2007) The introduction of the European bitterling (Rhodeus amarus) to west and Central Europe. Fish Fish 8:79–106

    Google Scholar 

  • Williams SE, Hoffman EA (2009) Minimizing genetic adaptation in captive breeding programs: a review. Biol Conserv 142:2388–2400

    Google Scholar 

  • Yoshikawa H, Ino Y, Shigenaga K, Katayama T, Kuroyanagi M, Yoshiura Y (2018) Production of tiger puffer Takifugu rubripes from cryopreserved testicular germ cells using surrogate broodstock technology. Aquaculture 493:302–313

    CAS  Google Scholar 

  • Yoshizaki G, Lee S (2018) Production of live fish derived from frozen germ cells via germ cell transplantation. Stem Cell Res 29:103–110

    PubMed  Google Scholar 

  • Yoshizaki G, Yazawa R (2019) Application of surrogate broodstock technology in aquaculture. Fish Sci 85:429–437

    CAS  Google Scholar 

  • Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, Okutsu T (2010) Sexual plasticity of ovarian germ cells in rainbow trout. Development 137:1227–1230

    CAS  PubMed  Google Scholar 

  • Yoshizaki G, Takashiba K, Shimamori S, Fujinuma K, Shikina S, Okutsu T, Kume S, Hayashi M (2016) Production of germ cell-deficient salmonids by dead end gene knockdown, and their use as recipients for germ cell transplantation. Mol Reprod Dev 83:298–311

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was partly supported by a Grant-in-Aid for Scientific Research (KAKENHI) (17H01488, 18H05545) and the Ocean Resource Use Promotion Technology Development Program conducted by MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goro Yoshizaki.

Ethics declarations

All experiments using live fish were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals at Tokyo University of Marine Science and Technology.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Octavera, A., Yoshizaki, G. Production of Chinese rosy bitterling offspring derived from frozen and vitrified whole testis by spermatogonial transplantation. Fish Physiol Biochem 46, 1431–1442 (2020). https://doi.org/10.1007/s10695-020-00802-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-020-00802-y

Keywords

Navigation