Skip to main content

Advertisement

Log in

De Novo Transcriptomics Analysis of the Floral Scent of Chinese Narcissus

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

The Chinese narcissus is a well-known monocotyledon plant with a beautiful color, and fresh with a sweet floral scent. Lack of transcriptomic and genomic information hinders understanding of the molecular mechanisms underlying the biosynthesis of narcissus floral scent volatiles. Here we predicted the functions of identified significantly differentially expressed genes (DEGs), according to public protein annotation databases. Using RNA-sequencing (RNA-Seq) on the Illumina HiSeq system and de novo transcriptome assembly, we investigated gene expression in narcissus corona and petal tissues at the early flowering (day 1) and full-bloom (day 7) stages. Significant differences in the expression profiles of 14 fragrance-related genes were further analyzed by qRT-PCR. A total of 62,826,860,514 bases were generated by RNA-seq; clean reads were 210,658,254 bp, and the guanine-cytosine content was 47.7%–48.88%. Transcripts (n = 167,374; 67.27%) and unigenes (n = 81,442; 32.73%) had mean lengths of 1069.70 bp and 813.27 bp, respectively. The total length and N50 length values of transcripts were 179,040,048 bp and 1654 bp, while those of unigenes were 66,234,291 bp and 1406 bp. Assembled genes were annotated by comparison with the non-redundant, Protein family, Clusters of Orthologous Groups of proteins, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology, public protein databases. Additionally, 46 and 71 significantly differentially expressed genes encoded enzymes and transcription factors, respectively, associated with floral volatiles biosynthesis pathways, were analyzed in-depth. Our findings represent a fundamental step toward better understanding of the mechanisms of narcissus floral volatile biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HS-SPME:

solid-phase microextraction

GC-MS:

gas chromatography/mass spectrometry

NES/LINS:

nerolidol/linalool synthase

TPS:

terpene synthase

AADC:

pyridoxal-50 -phosphate-dependent L-aromatic amino acid decarboxylase

PAR:

phenylacetaldehyde reductase

DXR:

1-deoxy-d-xylulose 5-phosphate reductoisomerase

PAL:

phenylalanine ammonia-lyase

BEAT:

benzyl alcohol acetyltransferase

BAMT:

benzoic acid carboxyl methyl transferase

SAMT:

salicylic acid carboxyl methyl- transferase

HPL:

Hydroperoxide lyase

2AP:

2-acetyl-1-pyrroline

BADH2 (AMADH2):

betaine aldehyde dehydrogenase 2

NR:

non-redundant protein sequences

Pfam:

Protein family

KOG/COG/eggnog:

Clusters of Orthologous Groups of proteins

Swiss-Prot:

a manually annotated and reviewed protein sequence database

KEGG:

Kyoto Encyclopedia of Genes and Genomes

GO:

Gene Ontology

DEGs:

differential expressed genes

IPP:

isopentenyl diphosphate

DMAPP (DMADP):

dimethylallyl diphosphate

G3P:

glyceraldehyde 3-phosphate

MEP:

2-C-methyl-D-erythritol 4-phosphate

DXS:

1-D-desoxyxylulose 5-phosphate synthase

DXP:

1-deoxy-d-xylulose 5-phosphate

TPP:

thiamine pyrophosphate

CMS:

2-C-methyl-D-erythritol 4- phosphate cytidylyltransferase

CTP:

cytosine 5′-triphosphate

ICME:

isoprenylcysteine methylesterase

GGDP:

geranylgeranyl diphosphate

Dedol-PP:

dehydrodolichyl diphosphate

DDS:

dedol-PP synthase

ABA:

abscisic acid

GA:

gibberellin

CDP-ME2P:

4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate

ME-CPP:

2-C-methyl-D-erythritol 2,4-cyclodiphosphate

MEcDP:

2- C-methyl-D-erythritol 2,4-cyclodiphosphate

HMBPP:

1-hydroxy-2-methyl-butenyl 4-disphosphate

FDP:

(E, E)-Famesyl-PP

GDP:

Geranyl-PP

DoI-PP:

Dolichol-PP

MAS:

momilactone A synthase

benzoyl-CoA:

O-benzoyltransferase

DBAT:

10-deacetylbaccatin III 10-O-acetyltransferase

Phe:

phenylalanine

Tyr:

tyrosine

TAL:

tyrosine ammonia lyase

4CL:

4-coumarate--CoA ligase

ALDH:

aldehyde dehydrogenase

CCR:

cinnamoyl CoA reductase

CCoAOMT:

caffeoyl-CoA-O-methyltransferase

CAD:

cinnamyl alcohol dehydrogenase

ASAT:

aspartate aminotransferase

HCT:

shikimate O-hydroxycinnamoyl transferase;

benzoyl-CoA:

benzyl alcohol O-benzoyltransferase

bZIP:

basic leucine zipper

ERF:

ethylene-responsive factor

bHLH:

basic helix-loop-helix

SRF:

serum response factor

TCP:

TEOSINTE-BRANCHED1/CYCLOIDEA/PCF

EOBI:

EMISSION OF BENZENOIDS I

MAPK:

mitogen-activated protein kinase

JA:

jasmonate acid

BIS1:

bHLH iridoid synthesis 1

qRT-PCR:

real-time quantitative PCR

FPKM:

fragments per kilobase of transcript per million mapped reads

FDR:

false discovery rate

TFs:

transcription factors

References

  • Anwar M, Wang G, Wu J, Waheed S, Allan A, Zeng L (2018) Ectopic overexpression of a novel R2R3-MYB, NtMYB2 from Chinese narcissus represses anthocyanin biosynthesis in tobacco. Molecules 23

  • Bai Z, Li W, Jia Y, Yue Z, Jiao J, Huang W, Xia P, Liang Z (2018) The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta 248:243–255

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Wu Y, Banerjee R, Li Y, Yan H, Sharkey TD (2013) Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J Biol Chem 288:16926–16936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  CAS  PubMed  Google Scholar 

  • Bera P, Mukherjee C, Mitra A (2017) Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci 256:25–38

    Article  CAS  PubMed  Google Scholar 

  • Bergström G, Dobson HEM, Groth I (1995) Spatial fragrance patterns within the flowers ofRanunculus acris (Ranunculaceae). Plant Syst Evol 195:221–242

    Article  Google Scholar 

  • Bohlmann J, Martin D, Oldham NJ, Gershenzon J (2000) Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys 375:261–269

    Article  CAS  PubMed  Google Scholar 

  • Bouider N, Fhayli W, Ghandour Z, Boyer M, Harrouche K, Florence X, Pirotte B, Lebrun P, Faury G, Khelili S (2015) Design and synthesis of new potassium channel activators derived from the ring opening of diazoxide: study of their vasodilatory effect, stimulation of elastin synthesis and inhibitory effect on insulin release. Bioorg Med Chem 23:1735–1746

    Article  CAS  PubMed  Google Scholar 

  • Bradbury LM, Fitzgerald TL, Henry RJ, Jin Q, Waters DL (2005) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    Article  CAS  PubMed  Google Scholar 

  • Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C (2018) Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiol 176:1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Celedon JM, Chiang A, Yuen MM, Diaz-Chavez ML, Madilao LL, Finnegan PM, Barbour EL, Bohlmann J (2016) Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J 86:289–299

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Tholl D, D'Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HC, Chi HS, Lin LY (2013) Headspace solid-phase microextraction analysis of volatile components in Narcissus tazetta var. chinensis Roem. Molecules 18:13723–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunillera N, Arro M, Fores O, Manzano D, Ferrer A (2000) Characterization of dehydrodolichyl diphosphate synthase of Arabidopsis thaliana, a key enzyme in dolichol biosynthesis. FEBS Lett 477:170–174

    Article  CAS  PubMed  Google Scholar 

  • Dal Cin V, Tieman DM, Tohge T, McQuinn R, de Vos RC, Osorio S, Schmelz EA, Taylor MG, Smits-Kroon MT, Schuurink RC, Haring MA, Giovannoni J, Fernie AR, Klee HJ (2011) Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. Plant Cell 23:2738–2753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dasgupta K, Thilmony R, Stover E, Oliveira ML, Thomson J (2017) Novel R2R3-MYB transcription factors from Prunus americana regulate differential patterns of anthocyanin accumulation in tobacco and citrus. GM Crops Food 8:85–105

    Article  PubMed  PubMed Central  Google Scholar 

  • D'Auria M, Lorenz R, Racioppi R, Romano VA (2017) Fragrance components of Platanthera bifolia subsp. osca. Nat Prod Res 31:1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Delorge I, Figueroa CM, Feil R, Lunn JE, Van Dijck P (2015) Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. Biochem J 466:283–290

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Feulner M, Schuhwerk F, Dötterl S (2009) Floral scent analysis in Hieracium subgenus Pilosella and its taxonomical implications. Flora 204:495–505

    Article  Google Scholar 

  • Filion GJ (2015) The signed Kolmogorov-Smirnov test: why it should not be used. Gigascience 4:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginglinger JF et al (2013) Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. Plant Cell 25:4640–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens J, Mertens J, Goossens A (2017) Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot 68:1333–1347

    CAS  PubMed  Google Scholar 

  • Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guterman I, Masci T, Chen X, Negre F, Pichersky E, Dudareva N, Weiss D, Vainstein A (2006) Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol Biol 60:555–563

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YY, Tsai WC, Kuoh CS, Huang TH, Wang HC, Wu TS, Leu YL, Chen WH, Chen HH (2006) Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol 6:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huizinga DH, Omosegbon O, Omery B, Crowell DN (2008) Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. Plant Cell 20:2714–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacopini S, Mariani M, de Caraffa VB, Gambotti C, Vincenti S, Desjobert JM, Muselli A, Costa J, Berti L, Maury J (2016) Olive recombinant hydroperoxide lyase, an efficient biocatalyst for synthesis of green leaf volatiles. Appl Biochem Biotechnol 179:671–683

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, Kaga A, Srinives P (2011) A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541

    Article  CAS  PubMed  Google Scholar 

  • Kanani M, Nazarideljou MJ (2017) Methyl jasmonate and α-aminooxi-β-phenyl propionic acid alter phenylalanine ammonia-lyase enzymatic activity to affect the longevity and floral scent of cut tuberose. Hortic Environ Biotechnol 58:136–143

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Keller Y, Bouvier F, d'Harlingue A, Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis--evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251:413–417

    Article  CAS  PubMed  Google Scholar 

  • Koca N, Karaman Ş (2015) The effects of plant growth regulators and l-phenylalanine on phenolic compounds of sweet basil. Food Chem 166:515–521

    Article  CAS  PubMed  Google Scholar 

  • Koeduka T, Orlova I, Baiga TJ, Noel JP, Dudareva N, Pichersky E (2009) The lack of floral synthesis and emission of isoeugenol in Petunia axillaris subsp. parodii is due to a mutation in the isoeugenol synthase gene. Plant J 58:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan P, Li W, Wang H, Ma W (2010) Characterization, sub-cellular localization and expression profiling of the isoprenylcysteine methylesterase gene family in Arabidopsis thaliana. BMC Plant Biol 10:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavhale SG, Kalunke RM, Giri AP (2018) Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants. Planta 248:1063–1078

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Xu W, Chowdhury M, Jin F (2014) Comparative proteomic analysis of labellum and inner lateral petals in cymbidium ensifolium flowers. Int J Mol Sci 15:19877–19897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Xiao Q, Zhang C, Du J, Li X, Huang H, Wei B, Li Y, Yu G, Liu H, Hu Y, Liu Y, Zhang J, Huang Y (2017) Identification and characterization of transcription factor ZmEREB94 involved in starch synthesis in maize. J Plant Physiol 216:11–16

    Article  CAS  PubMed  Google Scholar 

  • Li X, Tang D, Shi Y (2018) Volatile compounds in perianth and corona of Narcissus Pseudonarcissus cultivars. Nat Prod Res:1–4

  • Liang G, Zhang H, Li X, Ai Q, Yu D (2017) bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J Exp Bot 68:1743–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of Phenylpropanoid metabolism in plants. Mol Plant 8:689–708

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xiao Z, Yang L, Chen Q, Shao L, Liu J, Yu Y (2017) PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers. New Phytol 215:1490–1502

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • MacMillan J, Takahashi N (1968) Proposed procedure for the allocation of trivial names to the gibberellins. Nature 217:170–171

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Shibata Y, Tateba H, Hatanaka A, Kajiwara T (1997) Changes of lipoxygenase and fatty acid hydroperoxide lyase activities in bell pepper fruits during maturation. Biosci Biotechnol Biochem 61:199–201

    Article  CAS  PubMed  Google Scholar 

  • Mohd-Hairul AR, Namasivayam P, Cheng Lian GE, Abdullah JO (2010) Terpenoid, benzenoid, and phenylpropanoid compounds in the floral scent of Vanda Mimi palmer. J Plant Biol 53:358–366

    Article  CAS  Google Scholar 

  • Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949

    Article  PubMed  Google Scholar 

  • Obiol-Pardo C, Cordero A, Rubio-Martinez J, Imperial S (2010) Homology modeling of mycobacterium tuberculosis 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, the third enzyme in the MEP pathway for isoprenoid biosynthesis. J Mol Model 16:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onrubia M, Moyano E, Bonfill M, Palazon J, Goossens A, Cusido RM (2011) The relationship between TXS, DBAT, BAPT and DBTNBT gene expression and taxane production during the development of Taxus baccata plantlets. Plant Sci 181:282–287

    Article  CAS  PubMed  Google Scholar 

  • Orlova I, Marshall-Colon A, Schnepp J, Wood B, Varbanova M, Fridman E, Blakeslee JJ, Peer WA, Murphy AS, Rhodes D, Pichersky E, Dudareva N (2006) Reduction of Benzenoid synthesis in Petunia flowers reveals multiple pathways to benzoic acid and enhancement in Auxin transport. The Plant Cell Online 18:3458–3475

    Article  CAS  Google Scholar 

  • Pan C, Tian K, Ban Q, Wang L, Sun Q, He Y, Yang Y, Pan Y, Li Y, Jiang J, Jiang C (2017) Genome-wide analysis of the biosynthesis and deactivation of Gibberellin-dioxygenases gene family in Camellia sinensis (L.) O. Kuntze. Genes (Basel) 8

  • Paul P, Singh SK, Patra B, Sui X, Pattanaik S, Yuan L (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213:1107–1123

    Article  CAS  PubMed  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae) (I. localization and developmental modulation of monoterpene emission and linalool synthase activity). Plant Physiol 106:1533–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokhilko A, Bou-Torrent J, Pulido P, Rodriguez-Concepcion M, Ebenhoh O (2015) Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis. New Phytol 206:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Yu B, Liu J, Zhang X, Li G, Zhang D, Li L, Wang X, Wang L, Chen J, Mu W, Pan H, Zhang Y (2014) MADS-box transcription factor SsMADS is involved in regulating growth and virulence in Sclerotinia sclerotiorum. Int J Mol Sci 15:8049–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raguso RA (2016) More lessons from linalool: insights gained from a ubiquitous floral volatile. Curr Opin Plant Biol 32:31–36

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Yang J, Lu B, Jiang Y, Chen H, Hong Y, Wu B, Miao Y (2017) Structure of pigment metabolic pathways and their contributions to white tepal color formation of Chinese Narcissus tazetta var chinensis cv Jinzhanyintai. Int J Mol Sci:18

  • Ruíz-Ramón F, Águila DJ, Egea-Cortines M, Weiss J (2014) Optimization of fragrance extraction: daytime and flower age affect scent emission in simple and double narcissi. Ind Crop Prod 52:671–678

    Article  CAS  Google Scholar 

  • Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, Asai T, Dohra H, Hara M, Watanabe N (2014) Production of 2-phenylethanol in roses as the dominant floral scent compound fromL-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. Biosci Biotechnol Biochem 71:2408–2419

    Article  CAS  Google Scholar 

  • Sedeek KE, Qi W, Schauer MA, Gupta AK, Poveda L, Xu S, Liu ZJ, Grossniklaus U, Schiestl FP, Schluter PM (2013) Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids. PLoS One 8:e64621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Song G, Xiao J, Deng C, Zhang X, Hu Y (2007) Use of solid-phase microextraction as a sampling technique for the characterization of volatile compounds emitted from Chinese daffodil flowers. J Anal Chem 62:674–679

    Article  CAS  Google Scholar 

  • Toh C, Mohd-Hairul AR, Ain NM, Namasivayam P, Go R, Abdullah NAP, Abdullah MO, Abdullah JO (2017) Floral micromorphology and transcriptome analyses of a fragrant Vandaceous orchid, Vanda Mimi palmer, for its fragrance production sites. BMC Res Notes 10:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R, Vanden Bossche R, Miettinen K, Espoz J, Purnama PC, Kellner F, Seppanen-Laakso T, O'Connor SE, Rischer H, Memelink J, Goossens A (2015) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci U S A 112:8130–8135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Tang J, Hu R, Wu P, Hou XL, Song XM, Xiong AS (2015) Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. BMC Genomics 16:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu D, Ji J, Wang G, Guan C, Jin C (2014) LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep 33:2033–2045

    Article  CAS  PubMed  Google Scholar 

  • Xie DW, Wang XN, Fu LS, Sun J, Zheng W, Li ZF (2015) Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress. J Genet 94:55–65

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Liu C-L, Luo J, Qi Z, Yan Z, Fu Y, Wei S-S, Tang H (2019) Transcriptomic de novo analysis of pitaya (Hylocereus polyrhizus) canker disease caused by Neoscytalidium dimidiatum. BMC Genomics 20

  • Yamamura C, Mizutani E, Okada K, Nakagawa H, Fukushima S, Tanaka A, Maeda S, Kamakura T, Yamane H, Takatsuji H, Mori M (2015) Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J 84:1100–1113

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Endo S, Tanida A, Kai K, Watanabe N (2009) Synergy effect of sodium acetate and glycosidically bound volatiles on the release of volatile compounds from the unscented cut flower (Delphinium elatum L. “Blue Bird”). J Agric Food Chem 57:6396–6401

    Article  CAS  PubMed  Google Scholar 

  • Yundaeng C, Somta P, Tangphatsornruang S, Chankaew S, Srinives P (2015) A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theor Appl Genet 128:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Song A, Li P, Chen S, Jiang J, Chen F (2014) A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum. Sci Rep 4:6694

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu BQ, Cai J, Wang ZQ, Xu XQ, Duan CQ, Pan QH (2014) Identification of a plastid-localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries. Int J Mol Sci 15:21992–22010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Charlesworth (https://www.cwauthors.com.cn) for language editing services.

Funding

This work was supported by the Natural Science Foundation of China (NSFC; 30972031) and the Science and Technology Innovation Team of Fujian Academy of Agricultural Sciences (STIT2017-2-11).

Author information

Authors and Affiliations

Authors

Contributions

HYS and XM drafted the manuscript together. HYS conceived the study and participated in the design of all experiments. XM performed qRT-PCR and statistical analysis. CXJ participated in the data analysis and discussion about the experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yansen He or Xiaojing Chen.

Ethics declarations

Conflict Interest

Authors declare that they have no conflict interest.

Additional information

Communicated by: Dr. Marcelo C. Dornelas (Associate Editor)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Xu, M. & Chen, X. De Novo Transcriptomics Analysis of the Floral Scent of Chinese Narcissus. Tropical Plant Biol. 13, 172–188 (2020). https://doi.org/10.1007/s12042-020-09253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-020-09253-4

Keywords

Navigation