Skip to main content
Log in

TANNAKIAN CLASSIFICATION OF EQUIVARIANT PRINCIPAL BUNDLES ON TORIC VARIETIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let X be a complete toric variety equipped with the action of a torus T, and G a reductive algebraic group, defined over an algebraically closed field K. We introduce the notion of a compatible ∑-filtered algebra associated to X, generalizing the notion of a compatible ∑-filtered vector space due to Klyachko, where ∑ denotes the fan of X. We combine Klyachko's classification of T-equivariant vector bundles on X with Nori's Tannakian approach to principal G-bundles, to give an equivalence of categories between T-equivariant principal G-bundles on X and certain compatible ∑-filtered algebras associated to X, when the characteristic of K is 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Balaji, I. Biswas, D. S. Nagaraj, Principal bundles over projective manifolds with parabolic structure over a divisor, Tohoku Math. J. 53 (2001), 337–367.

    Article  MathSciNet  Google Scholar 

  2. I. Biswas, A. Dey, M. Poddar, A classfication of equivariant principal bundles on nonsingular toric varieties, Internat. J. Math. 27 (2016), no. 14, 1650115.

    Article  MathSciNet  Google Scholar 

  3. I. Biswas, A. Dey, M. Poddar, On equivariant Serre problem for principal bundles, Internat. J. Math. 29 (2018), no. 9, 1850054.

    Article  MathSciNet  Google Scholar 

  4. I. Biswas, A. Dey, M. Poddar, Equivariant principal bundle and logarithmic connection, Pacific J. Math. 280 (2016), no. 2, 315–325.

    Article  MathSciNet  Google Scholar 

  5. P. Bardsley, R. W. Richardson, Étale slices for algebraic transformation groups in characteristic p, Proc. London Math. Soc. 51 (1985), 295–317.

    Article  MathSciNet  Google Scholar 

  6. P. Deligne, J. S. Milne, A. Ogus, K.-y. Shih, Hodge cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics 900, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  7. В. И. Данилов, Геометрия торических многообразий, УМН 33 (1978), vyp. 2(200) 85–134. Engl. transl.: V. I. Danilov, The geometry of toric varieties, Russian Mathematical Surveys 33(2) (1978), 97–154.

  8. A. Dey, M. Poddar, Equivariant Abelian principal bundles on nonsingular toric varieties, Bull. Sci. Math. 140 (2016), 471–487.

    Article  MathSciNet  Google Scholar 

  9. W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, 1993.

    Book  Google Scholar 

  10. P. Heinzner, F. Kutzschebauch, An equivariant version of Grauert's Oka principle, Invent. Math. 119 (1995), 317–346.

    Article  MathSciNet  Google Scholar 

  11. N. Ilten, H. Süss, Equivariant vector bundles on T-varieties, Transform. Groups 20 (2015), 1043–1073.

    Article  MathSciNet  Google Scholar 

  12. K. Kaveh, C. Manon, Toric principal bundles, piecewise linear maps and buildings, arXiv:1806.05613v2 (2019).

  13. А. А. Клячко, Эквивариантные расслоения на торических многообразиях, Изв. АН СССР. Сер. матем. 53 (1989), vyp. 5, 10001{1039. Engl. transl.: A. A. Klyachko, Equivariant bundles over toric varieties, Math. USSR-Izv. 35 (1990), no. 2, 337–375.

  14. A. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), 419–445.

    Article  MathSciNet  Google Scholar 

  15. M. Kool, Fixed point loci of moduli spaces of sheaves on toric varieties, Adv. Math. 227 (2011), 1700–1755.

    Article  MathSciNet  Google Scholar 

  16. F. Kutzschebauch, F. Lárusson, G. W. Schwarz, An Oka principle for equivariant isomorphisms, J. reine angew. Math. 706 (2015), 193–214.

    MathSciNet  MATH  Google Scholar 

  17. F. Kutzschebauch, F. Lárusson, G. W. Schwarz, Homotopy principles for equivariant isomorphisms, Trans. Amer. Math. Soc. 369 (2017), 7251–7300.

    Article  MathSciNet  Google Scholar 

  18. F. Kutzschebauch, F. Lárusson, G. W. Schwarz, Sufficient conditions for holomorphic linearisation, Transform. Groups 22 (2017), 475–485.

    Article  MathSciNet  Google Scholar 

  19. F. Kutzschebauch, F. Lárusson, G. W. Schwarz, An equivariant parametric Oka principle for bundles of homogeneous spaces, Math. Ann. 370 (2018), 819–839.

    Article  MathSciNet  Google Scholar 

  20. J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 21, Springer-Verlag, New York, 1975.

    Google Scholar 

  21. T. Kaneyama, On equivariant vector bundles on an almost homogeneous variety, Nagoya Math. J. 57 (1975), 65–86.

    Article  MathSciNet  Google Scholar 

  22. S. Mac Lane, Categories for the Working Mathematician, 2nd edition, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.

  23. D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd edition, Springer-Verlag, Berlin, 1994.

    Book  Google Scholar 

  24. M. Nagata, Lectures on the Fourteenth Problem of Hilbert, Tata Institute of Fundamental Research, Bombay 1965.

    MATH  Google Scholar 

  25. M. V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 73–122.

    Article  MathSciNet  Google Scholar 

  26. T. Oda, Convex Bodies and Algebraic Geometry, An introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15. Springer- Verlag, Berlin, 1988.

  27. S. Payne, Moduli of toric vector bundles, Compos. Math. 144 (2008), 1199–1213.

    Article  MathSciNet  Google Scholar 

  28. M. Perling, Moduli for equivariant vector bundles of rank two on smooth toric surfaces, Math. Nachr. 265 (2004), 87–99.

    Article  MathSciNet  Google Scholar 

  29. R. W. Thomason, Algebraic K-theory of group scheme actions, in: Algebraic Topology and Algebraic K-theory (Princeton, N.J., 1983), Ann. of Math. Stud., Vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 539–563.

  30. W. C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Mathematics, Vol. 66, Springer-Verlag, New York, 1979.

  31. The stacks project, https://stacks.math.columbia.edu/tag/09SE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAINAK PODDAR.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BISWAS, I., DEY, A. & PODDAR, M. TANNAKIAN CLASSIFICATION OF EQUIVARIANT PRINCIPAL BUNDLES ON TORIC VARIETIES. Transformation Groups 25, 1009–1035 (2020). https://doi.org/10.1007/s00031-020-09557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09557-5

Navigation