Skip to main content

Advertisement

Log in

Maximizers for Fractional Caffarelli–Kohn–Nirenberg and Trudinger–Moser Inequalities on the Fractional Sobolev Spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper is mainly concerned with the existence of extremals for the fractional Caffarelli–Kohn–Nirenberg and Trudinger–Moser inequalities. We first establish the existence of extremals of the fractional Caffarelli–Kohn–Nirenberg inequalities in Theorem 1.1. It is also proved that the extremals of this inequality are the ground-state solutions of some fractional p-Laplacian equation. Then, we use the method of considering the level-sets of functions under consideration first developed by Lam and Lu (Adv Math 231(6):3259–3287, 2012; J Differ Equ 255(3), 298–325, 2013) and combining with a new compactness argument and the fractional rearrangement inequalities to establish the existence of extremals for the fractional Trudinger–Moser inequalities with the Dirichlet norm (see Theorems 1.21.31.6 and 1.7). Radial symmetry of extremals and concentration-compactness principle for the fractional Trudinger–Moser inequalities are also established in Theorems 1.41.8 and 1.9. Finally, we investigate some relationship between the best constants of the fractional Trudinger–Moser and Caffarelli–Kohn–Nirenberg inequalities in the asymptotic sense (see Theorem 1.11).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Bentifour, R.: Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications. J. Funct. Anal. 272, 3998–4029 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  3. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  Google Scholar 

  4. Bartsch, T., Peng, S., Zhang, Z.: Existence and non-existence of solutions to elliptic equations related to the Caffarelli–Kohn–Nirenberg inequalities. Calc. Var. Partial Differ. Equ. 30, 113–136 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bellazzini, J., Frank, R.L., Visciglia, N.: Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems. Math. Ann. 360, 653–673 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bliss, G.: An Integral Inequality. J. Lond. Math. Soc. 1, 40–46 (1930)

    MATH  Google Scholar 

  7. Bogdan, K., Dyda, B.: The Best constant in a fractional Hardy Inequality. Math. Nachr. 284, 629–638 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s\uparrow 1\) and application. J. Anal. Math. 87, 77–101 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 217–237 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Brezis, H., Vazquez, J.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Comput. Madrid 10, 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalies with weights. Compos. Math. 53, 259–275 (1984)

    MATH  Google Scholar 

  12. Carlseon, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110(2), 113–127 (1986)

    MathSciNet  Google Scholar 

  13. Catrina, F., Costa, D.: Sharp weighted-norm inequalities for functions with compact support in \(R^N\backslash {0}\). J. Differ. Equ. 246(1), 164–182 (2009)

    MATH  Google Scholar 

  14. Catrina, F., Wang, Z.-Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Chen, L., Li, J., Lu, G., Zhang, C.: Sharpened Adams inequality and ground state solutions to the Bi-Laplacian equation in \({\mathbb{R}}^4\). Adv. Nonlinear Stud. 18, 429–452 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Chen, L., Lu, G., Zhang, C.: Sharp weighted Trudinger-Moser-Adams inequalities on the whole space and the existence of their extremals. Calc. Var. Partial Differ. Equ. 58(4), Art. 132 (2019)

  17. Chen, L., Lu, G., Zhu, M.: Existence and nonexistence of extremals for critical Adams inequalities in \({\mathbb{R}}^4\) and Trudinger-Moser inequalities in \({\mathbb{R}}^2\). Adv. Math. (2020). https://doi.org/10.1016/j.aim.2020.107143

    Article  MATH  Google Scholar 

  18. Chou, K.S., Chu, C.W.: On the best constant for a weighted Sobolev–Hardy inequality. J. Lond. Math. Soc. (2) 48, 137–151 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Cohn, W., Lu, G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50(4), 1567–1591 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Cohn, W., Lu, G.: Sharp constants for Moser–Trudinger inequalities on spheres in complex space \(\mathbb{C}^n\). Commun. Pure Appl. Math. 57(11), 1458–1493 (2004)

    MATH  Google Scholar 

  21. Costa, D.: Some new and short proofs for a class of Caffarelli–Kohn—Nirenberg type inequalities. J. Math. Anal. Appl. 337, 311–317 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Damascelli, L., Merchán, S., Montoro, L., Sciunzi, B.: Radial symmetry and applications for a problem involving the \(-\Delta _p(\cdot )\) operator and critical nonlinearity in \({\mathbb{R}}^n\). Adv. Math. 265, 313–335 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Damascelli, L., Pacella, F., Ramaswamy, M.: Symmetry of ground states of p-Laplace equations via the moving plane method. Arch. Ration. Mech. Anal. 148, 291–308 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Del Pino, M., Dolbeault, J.: The optimal Euclidean Lp-Sobolev logarithmic inequaity. J. Funct. Anal. 197, 151–161 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Dolbeault, J., Esteban, M.J.: Extremal Functions in Some Interpolation Inequalities: Symmetry, Symmetry Breaking and Estimates of the Best Constants (English summary). Mathematical Results in Quantum Physics. World Scientific Publishing, Hackensack, pp. 178–182 (2011)

  28. Dolbeault, J., Esteban, M.J.: Extremal functions for Caffarelli—Kohn—Nirenberg and logarithmic Hardy inequalities. Proc. R. Soc. Edinb. Sect. A 142, 745–767 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Dolbeault, J., Esteban, M.J., Loss, M., Tarantello, G.: On the symmetry of extremals for the Caffarelli–Kohn Nirenberg inequalities. Adv. Nonlinear Stud. 9, 713–727 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Dolbeault, J., Esteban, M.J., Tarantello, G., Tertikas, A.: Radial symmetry and symmetry breaking for some interpolation inequalities. Calc. Var. Partial Differ. Equ. 42, 461–485 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Dong, M.: Existence of extremal functions for higher-order Caffarelli–Kohn—Nirenberg inequalities. Adv. Nonlinear Stud. 18(3), 543–553 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Dong, M., Lam, N., Lu, G.: Sharp weighted Trudinger–Moser and Caffarelli–Kohn—Nirenberg inequalities and their extremal functions. Nonlinear Anal. 173, 75–98 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Dong, M., Lu, G.: Best constants and existence of maximizers for weighted Trudinger–Moser inequalities. Calc. Var. Partial Differ. Equ. 55, Art. 88 (2016)

  34. Dyda, B.: A fractional order Hardy inequality. III. J. Math. 48, 575–588 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Dyda, B., Frank, R.: Fractional Hardy–Sobolev—Maz’ya inequality for domains. Stud. Math. 208, 151–166 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Filippas, S., Maz’ya, V., Tertikas, A.: Critical Hardy–Sobolev inequalities. J. Math. Pures Appl. 87, 37–56 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Flynn, J.: Sharp Caffarelli–Kohn–Nirenberg type inequalities on Carnot groups. Adv. Nonlinear Stud. 1, 95–111 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Frank, R., Seiringer, R.: Non-linear group state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-Linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352, 5703–5743 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Ha, H.B., Mai, T.T.: A Gagliardo–Nirenberg inequality for Orlicz and Lorentz spaces in \({\mathbb{R}}^n_+\). Vietnam J. Math. 35, 415–427 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Ishiwata, M.: Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \({\mathbb{R}}^N\). Math. Ann. 351(4), 781–804 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Iula, S., Maalaoui, A., Martinazzi, L.: A fractional Moser–Trudinger type inequalitiy in one dimension and its critical points. arXiv:1504.04862 (2015)

  43. Lam, N., Lu, G.: Sharp Moser—Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231(6), 3259–3287 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255(3), 298–325 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Lam, N., Lu, G.: Sharp constants and optimizers for a class of the Caffarelli—Kohn—Nirenberg inequalities. Adv. Nonlinear Stud. 17, 457–480 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Lam, N., Lu, G., Tang, H.: Sharp affine and improved Moser–Trudinger—Adams type inequalities on unbounded domains in the spirit of Lions. J. Geom. Anal. 27(1), 300–334 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger–Moser–Adams inequalities. Rev. Mat. Iberoam. 33(4), 1219–1246 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Lam, N., Lu, G., Zhang, L.: Factorizations and Hardy’s type identities and inequalities on upper half spaces. Calc. Var. Partial Differ. Equ. 58(6), Art. 183 (2019)

  49. Lam, N., Lu, G., Zhang, L.: Existence and nonexistence of extremal functions for sharp Trudinger–Moser inequalities. Adv. Math. 352, 1253–1298 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Lam, N., Lu, G., Zhang, L.: Sharp singular Trudinger–Moser inequalities under different norms. Adv. Nonlinear Stud. 19(2), 239–261 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Li, Y.X.: Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14, 163–192 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Li, Y.X.: Extremal functions for the Moser–Trudinger inequalities on compLiact Riemannian manifolds. Sci. China Ser. A 48(5), 618–648 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Li, Y.X.: Remarks on the extremal functions for the Moser–Trudinger inequality. Acta Math. Sin. (Engl. Ser.) 22(2), 545–550 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Li, Y.X., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \( {\mathbb{R}} ^{n}\). Indiana Univ. Math. J. 57, 451–480 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Li, J., Lu, G., Zhu, M.: Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions. Calc. Var. Partial Differ. Equ. 57(3), Art. 84 (2018)

  56. Lieb, E.H.: Sharp constants in the Hardy—Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    MathSciNet  MATH  Google Scholar 

  57. Lin, K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    MathSciNet  MATH  Google Scholar 

  58. Loss, M., Sloane, C.: Hardy inequalities for fractional integrals on general domains. J. Funct. Anal. 259, 1369–1379 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Lu, G., Yang, Q.: Paneitz operators on hyperbolic spaces and high order Hardy–Sobolev–Maz’ya inequalities on half spaces. Am. J. Math. 141(6), 1777–1816 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Lu, G., Zhu, M.: A sharp Trudinger-Moser type inequality involving Ln norm in the entire space \({\mathbb{R}^ n}\). J. Differ. Equ. 267(5), 3046–3082 (2019)

    MATH  Google Scholar 

  61. Lu, G., Zhu, J.: Symmetry and regularity of extremals of an integral equation related to the Hardy–Sobolev inequality. Calc. Var. Partial Differ. Equ. 42(3–4), 563–577 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Martinazzi, L.: Fractional Adams—Moser–Trudinger type inequalities. Nonlinear Anal. 127, 263–278 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Maz’ya, V.: Sobolev Spaces, Translated from the Russian by T. O. Shaposhnikova. Springer Series in Soviet Mathematics. Springer, Berlin (1985)

  64. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)

    MathSciNet  MATH  Google Scholar 

  65. Moser, J.: Sharp form of an inequality by N. Trudinger. Indiana Univ. Maths J. 20, 1077–1092 (1971)

    MathSciNet  MATH  Google Scholar 

  66. Nguyen, H., Squassina, M.: Fractional Caffarelli.-Kohn–Nirenberg inequalities. J. Funct. Anal. 274, 2661–2672 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Parint, E., Ruf, B.: On the Moser–Trudinger inequality in fractional Sobolev–Slobodeckij spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29, 315–319 (2018)

    MathSciNet  MATH  Google Scholar 

  68. Park, Y.: Fractional Polyá–Szegö Inequality. J. Chungcheong Math. Soc. 24, 267–271 (2011)

    Google Scholar 

  69. Shaw, M.C.: Eigenfunctions of the nonlinear equation \(\Delta u+\nu f(x, u)=0\) in \(R^2\). Pac. J. Math. 129(2), 349–356 (1987)

    MATH  Google Scholar 

  70. Shen, Y.: Existence of solutions for Choquard type elliptic problems with doubly critical nonlinearities. Adv. Nonlinear Stud. https://doi.org/10.1515/ans-2019-2056

  71. Sloane, C.A.: A fractional Hardy–Sobolev–Maz’ya inequality on the upper half space. Proc. Am. Math. Soc. 139, 1369–1379 (2010)

    MathSciNet  Google Scholar 

  72. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    MathSciNet  MATH  Google Scholar 

  73. Trudinger, N.: On embeddings in to Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  74. Wang, Z., Willem, M.: Caffarelli—Kohn—Nirenberg inequalities with remainder terms. J. Funct. Anal. 203, 550–568 (2003)

    MathSciNet  MATH  Google Scholar 

  75. Zhang, C.: Trudinger-Moser inequalities in fractional Sobolev—Slobodeckij spaces and multiplicity of weak solutions to the fractional-Laplacian equation. Adv. Nonlinear Stud. 19(1), 197–217 (2019)

    MathSciNet  MATH  Google Scholar 

  76. Zhang, C., Chen, L.: Concentration-compactness principle of singular Trudinger–Moser inequalities in \(R^n\) and \(n-\)Laplace equations. Adv. Nonlinear Stud. 18(3), 567–585 (2018)

    MathSciNet  MATH  Google Scholar 

  77. Zhang, C., Li, J., Chen, L.: Ground state solutions of polyharmonic equations with potentials of positive low bound. Pac. J. Math. 305(1), 353–384 (2020)

    MathSciNet  MATH  Google Scholar 

  78. Zhong, X., Zou, W.: Existence of extremal functions for a family of Caffarelli–Kohn–Nirenberg inequalities. arXiv:1504.00433 (2015)

Download references

Acknowledgements

Lu Chen was partly supported by a grant from the National Natural Science Foundation of China (No. 11901031) and a grant from Beijing Institute of Technology (No. 3170012221903). G. Lu was partly supported by a Simons Collaboration Grant from the Simons Foundation. The authors wish to thank the referee for his very careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhen Lu or Caifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Lu, G. & Zhang, C. Maximizers for Fractional Caffarelli–Kohn–Nirenberg and Trudinger–Moser Inequalities on the Fractional Sobolev Spaces. J Geom Anal 31, 3556–3582 (2021). https://doi.org/10.1007/s12220-020-00406-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00406-1

Keywords

Mathematics Subject Classification

Navigation