Skip to main content
Log in

Eells–Sampson Type Theorems for Subelliptic Harmonic Maps from sub-Riemannian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider critical maps of a horizontal energy functional for maps from a sub-Riemannian manifold to a Riemannian manifold. These critical maps are referred to as subelliptic harmonic maps. In terms of the subelliptic harmonic map heat flow, we investigate the existence problem for subelliptic harmonic maps. Under the assumption that the target Riemannian manifold has non-positive sectional curvature, we prove some Eells–Sampson type existence results for this flow when the source manifold is either a step-2 sub-Riemannian manifold or a step-r sub-Riemannian manifold whose sub-Riemannian structure comes from a tense Riemannian foliation. Finally, some Hartman type results are also established for the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baudoin, F.: An Introduction to the Geometry of Stochastic Flows. Imperial College Press, London (2004)

    Book  Google Scholar 

  2. Baudoin, F.: Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations. Geom. Anal. Dyn. Sub-Riemannian Manifolds 259–321 (2016)

  3. Baudoin, F.: Geometric inequalities on Riemannian and sub-Riemannian manifolds by heat semigroups techniques. Levico Summer School 2017, arXiv:1801.05702v2 [math.DG] 22 Jan (2018)

  4. Barilari, D., Boscain, U., Sigalotti, M. (eds.): Geometry, analysis and dynamics on sub-Riemannian manifolds, vol. I. EMS Ser. Lect. Math., Zürich (2016)

  5. Barilari, D., Boscain, U., Sigalotti, M. (eds.): Geometry, analysis and dynamics on sub-Riemannian manifolds, vol. II. EMS Ser. Lect. Math., Zürich (2016)

  6. Barletta, B., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from a nondegenerate CR manifold into a Riemannian manifold. Indiana Univ. Math. J. 50(2), 719–746 (2001)

    Article  MathSciNet  Google Scholar 

  7. Baudin, F., Feng, Q.: Log-Sobolev inequalities on the horizontal path space of a totally geodesic foliation. arXiv:1503.08180 [math.PR], (2015)

  8. Bismut, J.M.: Large Deviations and the Malliavin Calculus, Progress in Mathematics, vol. 45. Birkhauser Boston Inc., Boston (1984)

    MATH  Google Scholar 

  9. Biquard, O.: Quaternionic contact structures. Quaternionic structures in Mathematics and Physics (Rome, 1999), 23–30 (electronic), Univ. Studi Roma “La Sapienza”, Roma, (1999)

  10. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque 265, (2000)

  11. Bony, J.M.: Principe du maximum, inégalité de Harnack et unicité du probleme de Cauchy pour les opéateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19(1), 277–304 (1969)

    Article  MathSciNet  Google Scholar 

  12. Bramanti, M.: An Invitation to Hypoelliptic Operators and H örmander’s Vector Fields. Springer, New York (2014)

    Book  Google Scholar 

  13. Calin, O., Chang, D.C.: Sub-Riemannian Geometry: General Theory and Examples. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  14. Chang, S.C., Chang, T.H.: On the existence of pseudoharmonic maps from pseduohermitian manifolds into Riemannian manifolds with nonpositive curvature. Asian J. Math. 17(1), 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  15. Chow, W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939)

    MathSciNet  MATH  Google Scholar 

  16. Danielli, D., Garofalo, N., Nhieu, D.M.: Trace inequalities for Carnot-Carathéodory spaces and applications. Ann. Scuola Norm. Sup. Pisa Cl. Sci 27(2), 1995-252 (1998)

    MATH  Google Scholar 

  17. Dominguez, D.: Finiteness and tenseness theorems for Riemannian foliations. Am. J. Math. 120, 1237–1276 (1998)

    Article  MathSciNet  Google Scholar 

  18. Dragomir, S., Perrone, D.: Levi harmonic maps of contact Riemannian manifolds. J. Geom. Anal. 24(3), 1233–1275 (2014)

    Article  MathSciNet  Google Scholar 

  19. Eells, J., Lemaire, L.: Selected topics in harmonic maps. CBMS Reg. In: Conf. Ser. Math. vol. 50, Amer. Math. Soc., Providence (1983)

  20. Garofalo, N.: Hypoelliptic operators and some aspects of analysis and geometry of sub-Riemannian spaces. Geometry, analysis and dynamics on sub-Riemannian manifolds. vol. 1, pp. 123–257, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich (2016)

  21. Gromoll, D., Walschap, G.: Metric foliations and Curvature. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  22. Hajlasz, P., Strzelecki, P.: Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces. Math. Ann. 312(2), 341–362 (1998)

    Article  MathSciNet  Google Scholar 

  23. Hartman, P.: On homotopic harmonic maps. Canadian J. Math. 19(4), 673–687 (1967)

    Article  MathSciNet  Google Scholar 

  24. Hilderbrandt, S., Kaul, H., Widman, K.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138, 1–16 (1977)

    Article  MathSciNet  Google Scholar 

  25. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  26. Jost, J.: Nonlinear methods in Riemannian and Kählerian geometry. Birkhäuser Verlag, New York (1991)

    Book  Google Scholar 

  27. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (1995)

    Book  Google Scholar 

  28. Jost, J., Yau, S.T.: Harmonic maps and superrigidity. Proc. Symp. Pure Math. 54(1), 245–280 (1993)

    Article  MathSciNet  Google Scholar 

  29. Jost, J., Xu, C.J.: Subelliptic harmonic maps. Trans. Am. Math. Soc. 350, 4633–4649 (1998)

    Article  MathSciNet  Google Scholar 

  30. Jerison, D., Sáchez-Calle, A.: Subelliptic second order differential operators. In: Complex Analysis, III (College Park, Md., 1985–86), vol. 1277, pp. 46–77 (1987)

  31. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Interscience, New York (1963)

    MATH  Google Scholar 

  32. Li, P.: Lectures on harmonic maps. http://math.uci.edu/pli/harmonicmaps.pdf, University of California, Irvine (2011)

  33. Molino, P.: Riemannian Foliations, Progress in Mathematics, vol. 73. Birkhäuser, Boston (1988)

    Book  Google Scholar 

  34. Montgomery, R.: A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  35. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 130–147 (1985)

    Article  MathSciNet  Google Scholar 

  36. Rashevsky, P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math 2, 83–94 (1938)

    Google Scholar 

  37. Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. Math. 69, 119–132 (1959)

    Article  MathSciNet  Google Scholar 

  38. Rothschild, L., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(1), 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  39. Ren, Y.B., Yang, G.L.: Pseudo-harmonic maps from pseudo-Hermitian manifolds to Riemannian manifolds with nonpositive sectional curvature. to appear in Calc. Var. Partial Differential Equations (2018)

  40. Sáchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78(1), 143–160 (1984)

    Article  MathSciNet  Google Scholar 

  41. Schoen, R., Yau, S.T.: Compact group actions and the topology of manifolds with non-positive curvature. Topology 18, 361–380 (1979)

    Article  MathSciNet  Google Scholar 

  42. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263 (1986)

    Article  MathSciNet  Google Scholar 

  43. Toledo, D.: Rigidity Theorems in Kähler geometry and fundamental groups of varieties. Several Complex Variab. 37, 509–533 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Wang, C.Y.: Subelliptic harmonic maps from Carnot groups. Calc. Var. Partial Differ. Equ. 18(1), 95–115 (2003)

    Article  MathSciNet  Google Scholar 

  45. Zheng, S.Z., Feng, Z.S.: Regularity of subelliptic \(p\)-harmonic systems with subcritical growth in Carnot group. J. Differ. Equ. 258, 2471–2494 (2015)

    Article  MathSciNet  Google Scholar 

  46. Zhou, Z.R.: Uniqueness of subelliptic harmonic maps. Ann. Glob. Anal. Geom. 17(6), 581–594 (1999)

    Article  MathSciNet  Google Scholar 

  47. Zhou, Z.R.: Heat flows of subelliptic harmonic maps into Riemannian manifolds with nonpositive curvatures. J. Geom. Anal. 23(2), 471–489 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor P. Cheng for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC Grant No. 11771087, and LMNS, Fudan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y. Eells–Sampson Type Theorems for Subelliptic Harmonic Maps from sub-Riemannian Manifolds. J Geom Anal 31, 3608–3655 (2021). https://doi.org/10.1007/s12220-020-00408-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00408-z

Keywords

Mathematics Subject Classification

Navigation