Skip to main content
Log in

A Numerical and Experimental Study of Bubble Deformation on the Surface in a Shear Flow of Viscous Liquid

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

An experimental and numerical approach for studying the bubble deformation on the surface in the shear flow of viscous liquid is developed. The numerical approach is based on the boundary element method for the Stokes flows. The methods of optical microscopy and high-speed recording are applied for the experimental investigation of the bubble deformation. The dynamics of the variation in the receding and advancing contact angles is studied in dependence on the intensity of the shear flow of viscous liquid. A qualitative and quantitative agreement between the numerical modeling and experimental results for various capillary numbers is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Michaud, Transport Porous Media 115, 581 (2016). https://doi.org/10.1007/s11242-016-0629-7

    Article  MathSciNet  Google Scholar 

  2. P. E. Frommhold, R. Mettin, F. Holsteyns, and A. Lippert, in On-line Proceedings of the International German Annual Conference on Acoustics DAGA,2012, p. 455.

  3. F. Prabowo and C.-D. Ohl, Ultrason. Sonochem. 18, 431 (2011). https://doi.org/10.1016/j.ultsonch.2010.07.013

    Article  Google Scholar 

  4. O. A. Abramova, I. Sh. Akhatov, N. A. Gumerov, Yu. A. Pityuk, and S. P. Sametov, Fluid Dyn. 53, 337 (2018). https://doi.org/10.7868/S0568528118030015

    Article  MathSciNet  Google Scholar 

  5. E. A. Ervin and G. Tryggvason, J. Fluids Eng. 119, 443 (1997). https://doi.org/10.1115/1.2819153

    Article  Google Scholar 

  6. S. Dabiri, W. A. Sirignano, and D. D. Joseph, J. Fluid Mech. 651, 93 (2010). https://doi.org/10.1017/S0022112009994058

    Article  ADS  Google Scholar 

  7. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge Univ. Press, Cambridge, 1992). https://doi.org/10.1017/CBO9780511624124

  8. Y. A. Itkulova, O. A. Abramova, and N. A. Gumerov, in Proceedings of the ASME 2013, International Mechanical Engineering Congress and Exposition (Am. Soc. Mech. Eng., 2013), p. V07BT08A010. https://doi.org/10.1115/IMECE2013-63200

  9. Yu. A. Pityuk, N. A. Gumerov, O. A. Abramova, and I. Sh. Akhatov, Math. Models Comput. Simul. 10, 209 (2018).

    Article  MathSciNet  Google Scholar 

  10. N. A. Gumerov, I. S. Akhatov, C. D. Ohl, S. P. Sametov, M. V. Khazimullin, and S. R. Gonzalez-Avila, Appl. Phys. Lett. 108, 134102 (2016). https://doi.org/10.1063/1.4944893

    Article  ADS  Google Scholar 

  11. B. Kronberg, K. Holmberg, and B. Lindman, Surface Chemistry of Surfactants and Polymers (Wiley, 2014). https://doi.org/10.1002/9781118695968

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-38-20102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Pityuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pityuk, Y.A., Sametov, S.P., Mullayanov, A.I. et al. A Numerical and Experimental Study of Bubble Deformation on the Surface in a Shear Flow of Viscous Liquid. Tech. Phys. Lett. 45, 1194–1196 (2019). https://doi.org/10.1134/S1063785019120125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019120125

Keywords:

Navigation