Skip to main content
Log in

Migration of Giant Gaseous Clumps and Structure of the Outer Solar System

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

New data on the distribution of distant trans-Neptunian objects and on the properties of comets indicate the importance of dynamical processes in the outer part of the protoplanetary disk in the formation of the observed structure of the Solar System. In this paper, we examined the possible action of giant gaseous clumps, resulting from gravitational instability and fragmentation of circumstellar disks, on the orbital distribution of the population of small bodies in the outer Solar System. Basically, we studied those features of migration and gravitational interaction of giant clumps that were identified previously by Vorobyov and Elbakyan (2018). Our modeling showed that the main features of the distribution of small bodies resulting from the gravitational influence of giant clumps are consistent with the observed orbital distribution of distant trans-Neptunian objects. The studied dynamical process associated with a single giant clump is very short-time event (no more than several tens of thousands of years). The main factor affecting the orbital distribution of small bodies is close encounters with the giant clump. A significant part of small bodies (comets) is very quickly transferred to distant orbits with large eccentricities, which allows them to avoid mutual collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Baruteau, C., Meru, F., and Paardekooper, S.-J. Rapid inward migration of planets formed by gravitational instability, Mon. Not. R. Astron. Soc., 2011, vol. 416, pp. 1971–1982.

    Article  ADS  Google Scholar 

  2. Batygin, K. and Brown, M.E., Evidence for a distant giant planet in the Solar System, Astron. J., 2016, vol. 151, art. ID 22.

    Article  ADS  Google Scholar 

  3. Batygin, K. and Morbidelli, A., Dynamical evolution induced by Planet Nine, Astron. J., 2017, vol. 154, art. ID 229.

    Article  ADS  Google Scholar 

  4. Batygin, K., Adams, F.C., Brown, M.E., and Becker, J.C., The Planet Nine hypothesis, Phys. Rep., 2019 (in press).

  5. Boss, A.P., Evolution of the solar nebula. IV. Giant gaseous protoplanet formation, Astrophys. J., 1998, vol. 503, pp. 923–937.

    Article  ADS  Google Scholar 

  6. Boss, A.P., Formation of giant planets by disk instability on wide orbits around protostars with varied masses, Astrophys. J., 2011, vol. 731, art. ID 74.

    Article  ADS  Google Scholar 

  7. Brasser, R. and Morbidelli, A., Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System, Icarus, 2013, vol. 225, pp. 40–49.

    Article  ADS  Google Scholar 

  8. Brown, M.E. and Batygin, K., Orbital clustering in the distant Solar system, Astron. J., 2019, vol. 157, art. ID 62.

    Article  ADS  Google Scholar 

  9. Carusi, A. and Valsecchi, G.B., Planetary close encounters: importance of nearly tangent orbits, Moon Planets, 1980, vol. 22, pp. 113–124.

    Article  ADS  Google Scholar 

  10. Davidsson, B.J.R., Sierks, H., Güttler, C., Marzari, F., Pajola, M., Rickman, H., A’Hearn, M.F., Auger, A.-T., El-Maarry, M.R., Fornasier, S., Gutiérrez, P.J., Keller, H.U., Massironi, M., Snodgrass, C., Vincent, J.-B., et al., The primordial nucleus of comet 67P/Churyumov–Gerasimenko, Astron. Astrophys., 2016, vol. 592, art. ID A63.

    Article  Google Scholar 

  11. Emel’yanenko, N.Yu., Short-period comets with high values of the Tisserand constant: I. Orbital evolution, Sol. Syst. Res., 1997, vol. 31, pp. 229–238.

    ADS  Google Scholar 

  12. Emel’yanenko, V.V., A method of symplectic integrations with adaptive time-steps for individual Hamiltonians in the planetary N-body problem, Celest. Mech. Dyn. Astron., 2007, vol. 98, pp. 191–202.

    Article  ADS  MathSciNet  Google Scholar 

  13. Galvagni, M. and Mayer, L., Early evolution of clumps formed via gravitational instability in protoplanetary discs: precursors of Hot Jupiters?, Mon. Not. R. Astron. Soc., 2014, vol. 437. pp. 2909–2921.

  14. Fulle, M. and Blum, J., Fractal dust constrains the collisional history of comets, Mon. Not. R. Astron. Soc., 2017, vol. 469, pp. S39–S44.

    Article  ADS  Google Scholar 

  15. Fulle, M., Altobelli, N., Buratti, B., Choukroun, M., Fulchignoni, M., Grün, E., Taylor, M.G.G.T., and Weissman, P., Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view, Mon. Not. R. Astron. Soc., 2016, vol. 462, pp. S2–S8.

    Article  ADS  Google Scholar 

  16. Johnson, B.M. and Gammie, C.F., Nonlinear outcome of gravitational instability in disks with realistic cooling, Astrophys. J., 2003, vol. 597, pp. 131–141.

    Article  ADS  Google Scholar 

  17. Levison, H.F., Morbidelli, A., Tsiganis, K., Nesvorný, D., and Gomes, R., Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk, Astron. J., 2011, vol. 142, art. ID 152.

    Article  ADS  Google Scholar 

  18. Mannel, T., Bentley, M.S., Schmied, R., Jeszenszky, H., Levasseur-Regourd, A.C., Romstedt, J., and Torkar, K., Fractal cometary dust—a window into the early Solar system, Mon. Not. R. Astron. Soc., 2016, vol. 462, pp. S304–S311.

    Article  ADS  Google Scholar 

  19. Mayer, L., Quinn, T., Wadsley, J., and Stadel, J., Formation of giant planets by fragmentation of protoplanetary disks, Science, 2002, vol. 298, pp. 1756–1759.

    Article  ADS  Google Scholar 

  20. Morbidelli, A. and Nesvorny, D., Kuiper belt: formation and evolution, in The Trans-Neptunian Solar System, Prialnik, D., Barucci, M.A., and Young, L., Eds., Amsterdam: Elsevier, 2019.

    Google Scholar 

  21. Morbidelli, A. and Rickman, H., Comets as collisional fragments of a primordial planetesimal disk, Astron. Astrophys., 2015, vol. 583, art. ID A43.

    Article  ADS  Google Scholar 

  22. Nayakshin, S., Formation of planets by tidal downsizing of giant planet embryos, Mon. Not. R. Astron. Soc., 2010, vol. 408, pp. L36–L40.

    Article  ADS  Google Scholar 

  23. Nayakshin, S., Dawes review 7: The tidal downsizing hypothesis of planet formation, Publ. Astron. Soc. Austral., 2017, vol. 34, p. E002.

    Article  ADS  Google Scholar 

  24. Rafikov, R.R., Can giant planets form by direct gravitational instability? Astrophys. J., 2005, vol. 621, pp. L69–L72.

    Article  ADS  Google Scholar 

  25. Rickman, H., Marchi, S., A’Hearn, M.F., Barbieri, C., El-Maarry, M.R., Güttler, C., Ip, W.-H., Keller, H.U., Lamy, P., Marzari, F., Massironi, M., Naletto, G., Pajola, M., Sierks, H., Koschny, D., et al., Comet 67P/Churyumov–Gerasimenko: constraints on its origin from OSIRIS observations, Astron. Astrophys., 2015, vol. 583, art. ID A44.

    Article  Google Scholar 

  26. Stamatellos, D., The migration of gas giant planets in gravitationally unstable disks, Astrophys. J. Lett., 2015, vol. 810, art. ID L11.

    Article  ADS  Google Scholar 

  27. Stamatellos, D. and Whitworth, A.P., The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation, Mon. Not. R. Astron. Soc., 2009, vol. 392, pp. 413–427.

    Article  ADS  Google Scholar 

  28. Terquem, C. and Papaloizou, J.C.B., Dynamical relaxation and the orbits of low-mass extrasolar planets, Mon. Not. R. Astron. Soc., 2002, vol. 332, pp. L39–L43.

    Article  ADS  Google Scholar 

  29. Trujillo, C.A. and Sheppard, S.S., A Sedna-like body with a perihelion of 80 astronomical units, Nature, 2014, vol. 507, pp. 471–474.

    Article  ADS  Google Scholar 

  30. Vorobyov, E.I., Formation of giant planets and brown dwarfs on wide orbits, Astron. Astrophys., 2013, vol. 552, art. ID A129.

    Article  ADS  Google Scholar 

  31. Vorobyov, E.I. and Basu, S., The origin of episodic accretion bursts in the early stages of star formation, Astrophys. J., 2005, vol. 633, pp. L137–L140.

    Article  ADS  Google Scholar 

  32. Vorobyov, E.I. and Elbakyan, V.G., Gravitational fragmentation and formation of giant protoplanets on orbits of tens of au, Astron. Astrophys., 2018, vol. 618, art. ID A7.

    Article  ADS  Google Scholar 

  33. Wahlberg Jansson, K. and Johansen, A., Formation of pebble-pile planetesimals, Astron. Astrophys., 2014, vol. 570, art. ID A47.

    Article  ADS  Google Scholar 

  34. Zhu, Z., Hartmann, L., Nelson, R.P., and Gammie, C.F., Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction, Astrophys. J., 2012, vol. 746, art. ID 110.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The calculations were carried out using the MVS-100K supercomputer of the Joint Supercomputer Center of the Russian Academy of Sciences. The author would like to thank I. I. Shevchenko for useful comments.

Funding

This work was supported by the Russian Science Foundation (project No. 17-12-01441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Emel’yanenko.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emel’yanenko, V.V. Migration of Giant Gaseous Clumps and Structure of the Outer Solar System. Sol Syst Res 54, 64–69 (2020). https://doi.org/10.1134/S0038094620010013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620010013

Keywords:

Navigation