Skip to main content
Log in

Methylation Changes in Response to Hypoxic Stress in Wheat Regulated by Methyltransferases

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Waterlogging is a global abiotic stress that seriously restricts the growth and yield of wheat. DNA methylation is the most common epigenetic modification and plays an important role in plant responses to adverse conditions. In this study, the methylation-sensitive amplification polymorphism (MSAP) sequencing approach was used to detect the methylation levels and pattern changes under hypoxia stress in different waterlogging tolerance wheat (Triticum aestivum L.) genotypes. Methyltransferase gene expression and protein levels were higher in the tolerant wheat genotype. Although demethylation occurred predominantly in both wheat genotypes, waterlogging-related genes, such as ERF1, ACC1, and CKX2.3, were significantly upregulated only in the tolerant genotype by demethylation, whereas other genes, such as RGA2, were significantly downregulated only in the sensitive genotype. N6-Methyladenosine (m6A) content decreased significantly in the leaves of the sensitive genotype but remained unchanged in the tolerant genotype. Our results showed that both DNA and RNA methylations play a regulatory role in wheat response to waterlogging stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Brown, P.T.H., DNA methylation in plants and its role in tissue culture, Genome, 1989, vol. 31, p. 717.

    Article  CAS  Google Scholar 

  2. Cao, X. and Jacobsen, S.E., Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing, Curr. Biol., 2002, vol. 12, p. 1138.

    Article  CAS  Google Scholar 

  3. Vu, T.M., Nakamura, M., Calarco, J.P., Susaki, D., Lim, P.Q., Kinoshita, T., Higashiyama, T., Martienssen, R.A., and Berger, F., RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis,Development, 2013, vol. 140, p. 2953.

    Article  CAS  Google Scholar 

  4. Karan, R., Deleon, T., Biradar, H., and Subudhi, P.K., Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes, PLoS One, 2012, vol. 7. https://doi.org/10.1371/journal.pone.0040203

  5. Shen, H., He, H., Li, J., Chen, W., Wang, X., Guo, L., Peng, Z., He, G., Zhong, S., and Qi, Y., Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids, Plant Cell, 2012, vol. 24, p. 875.

    Article  CAS  Google Scholar 

  6. Tan, M.P., Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism, Plant Physiol. Biochem., 2010, vol. 48, p. 21.

    Article  CAS  Google Scholar 

  7. Huang, J.J., Wang, H.H., Xie, X.J., Zhang, D., Liu, Y., and Guo, G., Roles of DNA methyltransferases in Arabidopsi-s development, Afr. J. Biotechnol., 2010, vol. 9, p. 8506.

    CAS  Google Scholar 

  8. Ahmad, F., Huang, X., Lan, H.X., Huma, T., Bao, Y.M., Huang, J., and Zhang, H.S., Comprehensive gene expression analysis of the DNA (cytosine-5) methyltransferase family in rice (Oryza sativa L.), Genet. Mol. Res., 2014, vol. 13, p. 5159.

    Article  CAS  Google Scholar 

  9. Qian, Y., Xi, Y., Cheng, B., Qian, Y.X., Xi, Y.L., Cheng, B.J., and Zhu, S.W., Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize, Plant Cell Rep., 2014, vol. 33, p. 1661.

    Article  CAS  Google Scholar 

  10. Dai, Y., Ni, Z., Dai, J., Zhao, T., and Sun, Q., Isolation and expression analysis of genes encoding DNA methyltransferase in wheat (Triticum aestivum L.), Biochim. Biophys. Acta, 2005, vol. 1729, p. 118.

    Article  CAS  Google Scholar 

  11. Jung, J.H., Hong, M.J., Kim, D.Y., Kim, J.Y., Heo, H.Y., Kim, T.H., Jang, C.S., and Seo, Y.W., Structural and expressional divergence of genes encoding O-methyltransferase in wheat, Genome, 2008, vol. 51, p. 856.

    Article  CAS  Google Scholar 

  12. Meyer, K.D. and Jaffrey, S.R., The dynamic epitranscriptome: N6-methyladenosine and gene expression control, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, p. 313.

    Article  CAS  Google Scholar 

  13. Engel, M., Eggert, C., Kaplick, P.M., Eder, M., Röh, S., Tietze, L., Namendorf, C., Arloth, J., Weber, P., and Rex-Haffner, M., The role of m6A/m-RNA methylation in stress response regulation, Neuron, 2018, vol. 99, p. 389.

    Article  CAS  Google Scholar 

  14. Luo, G.Z., Macqueen, A., Zheng, G., Duan, H., Dore, L.C., Lu, Z., Liu, J., Chen, K., Jia, G., and Bergelson, J., Unique features of the m6A methylome in Arabidopsis thaliana,Nat. Commun., 2013, vol. 5, p. 5630.

    Article  Google Scholar 

  15. Bodi, Z., Zhong, S., Mehra, S., Song, J., Graham, N., Li, H., May, S., and Fray, R.G., Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects, Front. Plant Sci., 2012, vol. 3. https://doi.org/10.3389/fpls.2012.00048

  16. Wan, Y., Tang, K., Zhang, D., Xie, S., Zhu, X., Wang, Z., and Lang, Z., Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana,Ge-nome Biol., 2015, vol. 16. https://doi.org/10.1186/s13059-015-0839-2

  17. Li, Y., Wang, X., Li, C., Hu, S., Yu, J., and Song, S., Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification, RNA Biol., 2014, vol. 11, p. 1180.

    Article  Google Scholar 

  18. Villareal, R.L., Sayre, K., Banuelos, O., and Mujeeb-Kazi, A., Registration of four synthetic hexaploid wheat, germplasm lines tolerant to waterlogging, Crop Sci., 2001, vol. 41, p. 274.

    Article  Google Scholar 

  19. Pan, R., He, D.L., Xu, L., Zhou, M.X., Li, C.D., Wu, C., Xu, Y.H., and Zhang, W.Y., Proteomic analysis reveals response of differential wheat (Triticum ae-stivum L.) genotypes to oxygen deficiency stress, BMC Genomics, 2019, vol. 20: 60. https://doi.org/10.1186/s12864-018-5405-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baurens, F.C., Bonnot, F., Bienvenu, D., Causse, S., and Legavre, T., Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome, Plant Mol. Biol. Rep., 2003, vol. 21, p. 339.

    Article  CAS  Google Scholar 

  21. Bewick, A.J. and Schmitz, R.J., Gene body DNA methylation in plants, Curr. Opin. Plant Biol., 2017, vol. 36, p. 103.

    Article  CAS  Google Scholar 

  22. McGlynn, S.E., Boyd, E.S., Shepard, E.M., Lange, R.K., Gerlach, R., Broderick, J.B., and Peters, J.W., Identification and characterization of a novel member of the radical adomet enzyme superfamily and implications for the biosynthesis of the HMD hydrogenase active site cofactor, J. Bacteriol., 2010, vol. 192, p. 595.

    Article  CAS  Google Scholar 

  23. Wang, W.S., Qin, Q., Sun, F., Wang, Y.X., Xu, D.D., Li, Z.K., and Fu, B.Y., Genome-wide differences in DNA methylation changes in two contrasting rice genotypes in response to drought conditions, Front. Plant Sci., 2016, vol. 7: 1675. https://doi.org/10.3389/fpls.2016.01675

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, X., Wang, X., He, K., Ma, Y.Q., Su, N., He, H., Stolc, V., Tongprasit, W., Jin, W.W., and Jiang, J.M., High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression, Plant Cell, 2008, vol. 20, p. 259.

    Article  CAS  Google Scholar 

  25. Wei, Z., Zhong, X., You, J., and Xiong, L., Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress, Plant Mol. Biol., 2013, vol. 81, p. 175.

    Article  Google Scholar 

  26. Hossain, M.A. and Uddin, S.N., Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia, Aust. J. Crop. Sci., 2011, vol. 5, p. 1094.

    CAS  Google Scholar 

  27. Sasaki, Y. and Nagano, Y., Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding, Biosci. Biotechnol. Biochem., 2004, vol. 68, p. 1175.

    Article  CAS  Google Scholar 

  28. Ma, Y.Y., Zheng, L., Xie, R., He, S.L., and Deng, L., Genome-wide identification and analysis of CKX genes in Poncirus trifoliata,J. Hortic. Sci., 2016, vol. 91, p. 592.

    CAS  Google Scholar 

  29. Li, M., Liang, Z.X., Zeng, Y., Jing, Y., Wu, K.C., Liang, J., He, S.S., Wang, G.Y., Mo, Z.H., and Tan, F., De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.), BMC Genomics, 2016, vol. 17: 195.

    Article  Google Scholar 

  30. Fu, Y., Dan, D., Rechavi, G., and He, C., Gene expression regulation mediated through reversible m6A RNA methylation, Nat. Rev. Genet., 2014, vol. 15, p. 293.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Nature Science Foundation of China (project no. 31471496).

Author information

Authors and Affiliations

Authors

Contributions

W.Y.Z. initiated the project; R.P., W.J. and Q.W. performed the experiments; W.Y.Z., R.P., Y.H.X., L.X. and M.X.Z. analyzed the data. All the authors discussed the results and approved the manuscript.

Corresponding author

Correspondence to W. Y. Zhang.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: ACC1—acetyl-coA carboxylase 1; ERF1—ethylene response factor 1; MSAP—methylation sensitive amplification polymorphism; m6A—N6-methyladenosine.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Xu, Y.H., Xu, L. et al. Methylation Changes in Response to Hypoxic Stress in Wheat Regulated by Methyltransferases. Russ J Plant Physiol 67, 323–333 (2020). https://doi.org/10.1134/S1021443720020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720020120

Keywords:

Navigation