Skip to main content
Log in

Ascorbate in the Apoplast: Metabolism and Functions

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Ascorbic acid (AA) is one of the most important antioxidants and redox-active substances of plants found in the apoplast. In the form of ascorbate anion, it can be exported to the cell wall through anion channels, where it is further oxidized to dehydroascorbic acid (DHA) and in this form is translocated back into the cytoplasm through as yet unidentified transporters. In the apoplast AA is exposed to both enzymatic and non-enzymatic oxidation, participating in the antioxidant and pro-oxidant processes: detoxification of O3, generation of hydroxyl radicals, reduction of phenoxyl radicals, etc. The intermediate product of the AA oxidation in apoplast, monodehydroascorbic acid (MDHA), serves as an extracellular electron acceptor for a number of redox chains localized at the plasma membrane (PM). All three forms of ascorbate, AA, DHA and MDHA, can potentially be involved in the cell signalling. Released from the cell through anionic channels during PM depolarization, AA can stimulate the production of hydroxyl radicals that activate Ca2+-permeable channels, and thus trigger Ca2+-signalling. Due to the ability to generate hydroxyl radicals and reduce phenoxyl radicals, AA affects cell wall extensibility and extension growth. By reducing Fe3+ to a freely soluble transport form of Fe2+, AA is involved in iron uptake by root cells. Apoplastic AA also plays an important role in a number of other processes and is potentially a unique signal-regulatory molecule functioning in the plant cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sharova, E.I. and Medvedev, S.S., Redox reactions in apoplast of growing cells, Russ. J. Plant Physiol., 2017, vol. 64, p. 1.

    Article  CAS  Google Scholar 

  2. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford: Oxford Univ. Press, 2015.

    Book  Google Scholar 

  3. De Pinto, M.C., Francis, D., and de Gara, L., The redox state of the ascorbate–dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells, Protoplasma, 1999, vol. 209, p. 90.

    Article  CAS  PubMed  Google Scholar 

  4. Paciolla, C., de Tullio, M.C., Chiappetta, A., Innocenti, A.M., Bitonti, M.B., Liso, R., and Arrigoni, O., Short- and long-term effects of dehydroascorbate in Lupinus albus and Allium cepa roots, Plant Cell Physiol., 2001, vol. 42, p. 857.

    Article  CAS  PubMed  Google Scholar 

  5. Kärkönen, A., Dewhirst, R.A., Mackay, C.L., and Fry, S.C., Metabolites of 2,3-diketogulonate delay peroxidase action and induce non-enzymic H2O2 generation: potential roles in the plant cell wall, Arch. Bioch-em. Biophys., 2017, vol. 620, p. 12.

  6. Smirnoff, N., Ascorbic acid metabolism and functions: a comparison of plants and animals, Free Radic. Biol. Med., 2018, vol. 122, p. 116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Makavitskaya, M., Svistunenko, D., Navaselsky, I., Hryvusevich, P., Mackievic, V., Rabadanova, C., Tyutereva, E., Samokhina, V., Straltsova, D., Sokolik, A., Voitsekhovskaja, O., and Demidchik, V., Novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels, J. Exp. Bot., 2018, vol. 69, p. 3477.

    Article  CAS  PubMed  Google Scholar 

  8. May, J.M., The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C, Br. J. Pharmacol., 2011, vol. 164, p. 1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corti, A., Casini, A.F., and Pompella, A., Cellular pathways for transport and efflux of ascorbate and dehydroascorbate, Arch. Biochem. Biophys., 2010, vol. 500, p. 107.

    Article  CAS  PubMed  Google Scholar 

  10. May, J.M. and Qu, Z.C., Ascorbic acid efflux from human brain microvascular pericytes: role of re-uptake, Biofactors, 2015, vol. 41, p. 330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deng, D., Xu, C., Sun, P., Wu, J., Yan, C., Hu, M., and Yan, N., Crystal structure of the human glucose transporter GLUT1, Nature, 2014, vol. 510, p. 121.

    Article  CAS  PubMed  Google Scholar 

  12. Jentsch, T.J., Lutter, D., Planells-Cases, R., Ullrich, F., and Voss, F.K., VRAC: molecular identification as LRRC-8 heteromers with differential functions, Pflugers Arch., 2016, vol. 468, p. 385.

    Article  CAS  PubMed  Google Scholar 

  13. Horemans, N., Foyer, C.H., and Asard, H., Transport and action of ascorbate at the plant plasma membrane, Trends Plant Sci., 2000, vol. 5, p. 263.

    Article  CAS  PubMed  Google Scholar 

  14. Kollist, H., Moldau, H., Oksanen, E., and Vapaavuori, E., Ascorbate transport from the apoplast to the symplast in intact leaves, Physiol. Plant., 2001, vol. 113, p. 377.

    Article  CAS  PubMed  Google Scholar 

  15. Horemans, N., Szarka, A., de Bock, M., Raeymaekers, T., Potters, G., Levine, M., Banhégyi, G., and Guisez, Y., Dehydroascorbate and glucose are taken up into Arabidopsis thaliana cell cultures by two distinct mechanisms, FEBS Lett., 2008, vol. 582, p. 2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kourkoulou, A., Pittis, A.A., and Diallinas, G., Evolution of substrate specificity in the Nucleobase-Ascorbate Transporter (NAT) protein family, Microb. Cell, 2018, vol. 5, p. 280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma, T., Dreyer, I., Kochian, L., and Piñeros, M.A., The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security, Front. Plant Sci., 2016, vol. 7: e1488. https://doi.org/10.3389/fpls.2016.01488

    Article  Google Scholar 

  18. Demidchik, V., Cuin, T.A., Svistunenko, D., Smith, S.J., Miller, A.J., Shabala, S., Sokolik, A., and Yurin, V., Arabidopsis root K+ efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death, J. Cell Sci., 2010, vol. 123, p. 1468.

    Article  CAS  PubMed  Google Scholar 

  19. Demidchik, V., ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature, Int. J. Mol. Sci., 2018, vol. 19: e1263. https://doi.org/10.3390/ijms19041263

    Article  CAS  PubMed  Google Scholar 

  20. Medvedev, S.S., Principles of calcium signal generation and transduction in plant cells, Russ. J. Plant Physiol., 2018, vol. 65, p. 771.

    Article  CAS  Google Scholar 

  21. Castagna, A. and Ranieri, A., Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment, Environ. Pollut., 2009, vol. 157, p. 1461.

    Article  CAS  PubMed  Google Scholar 

  22. Parsons, H.T. and Fry, S.C., Reactive oxygen species-induced release of intracellular ascorbate in plant cell-suspension cultures and evidence for pulsing of net release rate, New Phytol., 2010, vol. 187, p. 332.

    Article  CAS  PubMed  Google Scholar 

  23. Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, G.A., Sokolik, A., and Yurin, V., Stress-induced electrolyte leakage: ion-channel mechanism and potential roles in programmed cell death and metabolic adjustment, J. Exp. Bot., 2014, vol. 65, p. 1259.

    Article  CAS  PubMed  Google Scholar 

  24. Grillet, L., Ouerdane, L., Flis, P., Hoang, M.T.T., Isaure, M.-P., Lobinski, R., Curie, C., and Mari, S., Ascorbate efflux as a new strategy for iron reduction and transport in plants, J. Biol. Chem., 2014, vol. 289, p. 2515.

    Article  CAS  PubMed  Google Scholar 

  25. Asard, H., Barbaro, R., Trost, P., and Berczi, A., Cytochromes b561: ascorbate-mediated trans-membrane electron transport, Antioxid. Redox Signal., 2013, vol. 19, p. 1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, P., Ma, D., Yan, C., Gong, X., Du, M., and Shi, Y., Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, p. 1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Picco, C., Scholz-Starke, J., Festa, M., Costa, A., Sparla, F., Trost, P., and Carpaneto, A., Direct recording of trans-plasma membrane electron currents mediated by a member of the cytochrome b561 family of soybean, Plant Physiol., 2015, vol. 169, p. 986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Preger, V., Tango, N., Marchand, C., Lemaire, S.D., Carbonera, D., di Valentin, M., Costa, A., Pupillo, P., and Trost, P., Auxin-responsive genes AIR12 code for a new family of plasma membrane b-type cytochromes specific to flowering plants, Plant Physiol., 2009, vol. 150, p. 606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Biniek, C., Heyno, E., Kruk, J., Sparla, F., Trost, P., and Krieger-Liszkay, A., Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane, Planta, 2017, vol. 245, p. 807.

    Article  CAS  PubMed  Google Scholar 

  30. Lüthje, S., Möller, B., Perrineau, F.C., and Wöltje, K., Plasma membrane electron pathways and oxidative stress, Antioxid. Redox Signal., 2013, vol. 18, p. 2163.

  31. Miyake, N., Kim, M., and Kurata, T., Formation mechanism of monodehydro-L-ascorbic acid and superoxide anion in the autoxidation of L-ascorbic acid, Biosci. Biotechnol. Biochem., 1997, vol. 61, p. 1693.

    Article  CAS  PubMed  Google Scholar 

  32. Fry, S.C., Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells, New Phytol., 2004, vol. 161, p. 641.

    Article  CAS  PubMed  Google Scholar 

  33. Green, M.A. and Fry, S.C., Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the plant cell wall, Plant Biosyst., 2005, vol. 139, p. 2.

    Article  Google Scholar 

  34. Fry, S.C., Miller, J.G., and Dumville, J.C., A proposed role for copper ions in cell wall loosening, Plant Soil, 2002, vol. 247, p. 57.

    Article  CAS  Google Scholar 

  35. Demidchik, V., Mechanisms of oxidative stress in plants: from classical chemistry to cell biology, Environ. Exp. Bot., 2015, vol. 109, p. 212.

    Article  CAS  Google Scholar 

  36. De Cabo, R.C., Gonzalez-Reyes, J.A., and Navas, P., The onset of cell proliferation is stimulated by ascorbate free radical in onion root primordia, Biol. Cell, 1993, vol. 77, p. 231.

    Article  CAS  Google Scholar 

  37. González-Reyes, J.A., Alcaín, F.J., Caler, J.A., Serrano, A., Córdoba, F., and Navas, P., Relationship between apoplastic ascorbate regeneration and the stimulation of root growth in Allium cepa L., Plant Sci., 1994, vol. 100, p. 23.

  38. Van Duijn, M.M., van der Zee, J., VanSteveninck, J., and van den Broek, P.J.A., Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase, J. Biol. Chem., 1998, vol. 273, p. 13415.

    Article  CAS  PubMed  Google Scholar 

  39. Ferreres, F., Figueiredo, R., Bettencourt, S., Carqueijeiro, I., Oliveira, J., Gil-Izquierdo, A., Pereira, D.M., Valentão, P., Andrade, P.B., Duarte, P., Barceló, A.R., and Sottomayor, M., Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J. Exp. Bot., 2011, vol. 62, p. 2841.

    Article  CAS  PubMed  Google Scholar 

  40. Truffault, V., Fry, S.C., Stevens, R.G., and Gautier, H., Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate, Plant J., 2017, vol. 89, p. 996.

    Article  CAS  PubMed  Google Scholar 

  41. Parsons, H.T. and Fry, S.C., Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions, Phytochemistry, 2012, vol. 75, p. 41.

    Article  CAS  PubMed  Google Scholar 

  42. Dewhirst, R.A. and Fry, S.C., The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species, Biochem. J., 2018, vol. 475, p. 3451.

    Article  CAS  PubMed  Google Scholar 

  43. Flandrin, A., Allouche, S., Rolland, Y., McDuff, F.-O., Wagner, J.R., and Klarskov, K., Characterization of dehydroascorbate mediated modification of glutaredoxin by mass spectrometry, J. Mass Spectrom., 2015, vol. 50, p. 1358.

    Article  CAS  PubMed  Google Scholar 

  44. Sandermann, H., Ecotoxicology of ozone: bioactivation of extracellular ascorbate, Biochem. Biophys. Res. Commun., 2008, vol. 366, p. 271.

    Article  CAS  PubMed  Google Scholar 

  45. Lin, L.S. and Varner, J.E., Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.), Plant Physiol., 1991, vol. 96, p. 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ueda, Y., Wu, L., and Frei, M., A critical comparison of two high-throughput ascorbate analyses methods for plant samples, Plant Physiol. Biochem., 2013, vol. 70, p. 418.

    Article  CAS  PubMed  Google Scholar 

  47. Cisternas, P., Silva-Alvarez, C., Martínez, F., F-ernandez, E., Ferrada, L., Oyarce, K., Salazar, K., Bolaños, J.P., and Nualart, F., The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism, J. Neurochem., 2014, vol. 129, p. 663.

    Article  CAS  PubMed  Google Scholar 

  48. Szarka, A. and Lörincz, T., The role of ascorbate in protein folding, Protoplasma, 2014, vol. 251, p. 489.

    Article  CAS  PubMed  Google Scholar 

  49. De Tullio, M.C., Jiang, K., and Feldman, L.J., Redox regulation of root apical meristem organization: connecting root development to its environment, Plant Physiol. Biochem., 2010, vol. 48, p. 328.

    Article  CAS  PubMed  Google Scholar 

  50. De Tullio, M., Guether, M., and Balestrini, R., Ascorbate oxidase is the potential conductor of a symphony of signaling pathways, Plant Signal. Behav., 2013, vol. 8: e23213. https://doi.org/10.4161/psb.23213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., Burlat, V., and Dunand, C., Roles of cell wall peroxidases in plant development, Phytochemistry, 2015, vol. 112, p. 15.

    Article  CAS  PubMed  Google Scholar 

  52. Moural, T.W., Lewis, K.M., Barnaba, C., Zhu, F., Palmer, N.A., Sarath, G., Scully, E.D., Jones, J.P., Sattler, S.E., and Kang, C., Characterization of class III peroxidases from switchgrass, Plant Physiol., 2017, vol. 173, p. 417.

    Article  CAS  PubMed  Google Scholar 

  53. Takahama, U. and Oniki, T., A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells, Physiol. Plant., 1997, vol. 101, p. 845.

    Article  CAS  Google Scholar 

  54. Šukalović, V.H.T., Vuletić, M., and Vučinić, Ž., Plasma membrane-bound phenolic peroxidase of maize roots: in vitro regulation of activity with NADH and ascorbate, Plant Sci., 2003, vol. 165, p. 1429.

  55. Córdoba-Pedregosa, M.C., González-Reyes, J.A., Cañadillas, M.S., Navas, P., and Córdoba, F., Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate, Plant Physiol., 1996, vol. 112, p. 1119.

  56. Sánchez, M., Queijeiro, E., Revilla, G., and Zarra, I., Changes in ascorbic acid levels in apoplastic fluid during growth of pine hypocotyls. Effect on peroxidase activities associated with cell walls, Physiol. Plant., 1997, vol. 101, p. 815.

  57. Padu, E., Apoplastic peroxidases, ascorbate and lignification in relation to nitrate supply in wheat stem, J. Plant Physiol., 1999, vol. 154, p. 576.

    Article  CAS  Google Scholar 

  58. Miyake, C. and Asada, K., Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase, Plant Cell Physiol., 1996, vol. 37, p. 423.

    Article  CAS  Google Scholar 

  59. Zhu, J., Alvarez, S., Marsh, E.L., LeNoble, M.E., Cho, I.J., Sivaguru, M., Chen, S., Nguyen, H.T., Wu, Y., Schachtman, D.P., and Sharp, R.E., Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit, Plant Physiol., 2007, vol. 145, p. 1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Gara, L., Class III peroxidases and ascorbate metabolism in plants, Phytochem. Rev., 2004, vol. 3, p. 195.

    Article  CAS  Google Scholar 

  61. De Pinto, M.C. and de Gara, L., Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation, J. Exp. Bot., 2004, vol. 55, p. 2559.

    Article  CAS  PubMed  Google Scholar 

  62. Ranieri, A., D’Urso, G., Nali, C., Lorenzini, G., and Soldatini, G.F., Ozone stimulates apoplastic antioxidant systems in pumpkin leaves, Physiol. Plant., 1996, vol. 97, p. 381.

    Article  CAS  Google Scholar 

  63. Ranieri, A., Castagna, A., and Soldatini, G.F., Differential stimulation of ascorbate peroxidase isoforms by ozone exposure in sunflower plants, J. Plant Physiol., 2000, vol. 156, p. 266.

    Article  CAS  Google Scholar 

  64. Córdoba-Pedregosa, M.C., Córdoba, F., Villalba, J.M., and González-Reyes, J.A., Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots, Plant Physiol., 2003, vol. 131, p. 697.

  65. Ros-Barceló, A., Gómez-Ros, L.V., Ferrer, M.A., and Hernández, J.A., The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees, Trees—Struct. Funct., 2006, vol. 20, p. 145.

  66. Stevens, R., Truffault, V., Baldet, P., and Gautier, H., Ascorbate oxidase in plant growth, development, and stress tolerance, in Ascorbic Acid in Plant Growth, Development and Stress Tolerance, Hossain, M.A., Munné-Bosch, S., Burritt, D.J., Diaz-Vivancos, P., Fujita, M., and Lorence, A., Eds., Cham: Springer Int., 2017, p. 273.

  67. Mertz, D., Distribution and cellular localization of ascorbic acid oxidase in the maize root tip, Am. J. Bot., 1961, vol. 48, p. 405.

    Article  CAS  Google Scholar 

  68. Kato, N. and Esaka, M., Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells, Physiol. Plant., 1999, vol. 105, p. 321.

    Article  CAS  Google Scholar 

  69. De Tullio, M.C., Ciraci, S., Liso, R., and Arrigoni, O., Ascorbic acid oxidase is dynamically regulated by light and oxygen. A tool for oxygen management in plants? J. Plant Physiol., 2007, vol. 164, p. 39.

    Article  CAS  PubMed  Google Scholar 

  70. Kato, N. and Esaka, M., Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts, Planta, 2000, vol. 210, p. 1018.

    Article  CAS  PubMed  Google Scholar 

  71. Pignocchi, C. and Foyer, C.H., Apoplastic ascorbate metabolism and its role in the regulation of cell signalling, Curr. Opin. Plant Biol., 2003, vol. 6, p. 379.

    Article  CAS  PubMed  Google Scholar 

  72. Sanmartin, M., Drogoudi, P.D., Lyons, T., Pateraki, I., Barnes, J., and Kanellis, A.K., Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone, Planta, 2003, vol. 216, p. 918.

    Article  CAS  PubMed  Google Scholar 

  73. Pignocchi, C., Kiddle, G., Hernández, I., Foster, S.J., Asensi, A., Taybi, T., Barnes, J., and Foyer, C.H., Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco, Plant Physiol., 2006, vol. 141, p. 423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fotopoulos, V., de Tullio, M.C., Barnes, J., and Kanellis, A.K., Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling, J. Exp. Bot., 2008, vol. 59, p. 729.

    Article  CAS  PubMed  Google Scholar 

  75. Fotopoulos, V. and Kanellis, A.K., Altered apoplastic ascorbate redox state in tobacco plants via ascorbate oxidase overexpression results in delayed dark-induced senescence in detached leaves, Plant Physiol. Biochem., 2013, vol. 73, p. 154.

    Article  CAS  PubMed  Google Scholar 

  76. Balestrini, R., Ott, T., Güther, M., Bonfante, P., Udvardi, M.K., and de Tullio, M.C., Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, Plant Physiol. Biochem., 2012, vol. 59, p. 71.

    Article  CAS  PubMed  Google Scholar 

  77. Lee, Y., Park, C.H., Kim, A.R., Chang, S.C., Kim, S.H., Lee, W.S., and Kim, S.K., The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana,Plant Physiol. Biochem., 2011, vol. 49, p. 909.

    Article  CAS  PubMed  Google Scholar 

  78. Li, X., Makavitskaya, M., Samokhina, V., Mackievic, V., Navaselsky, I., Hryvusevich, P., Smolikova, G., Medvedev, S., Shabala, S., Yu, M., and Demidchik, V., Effects of exogenously-applied L-ascorbic acid on root expansive growth and viability of the border-like cells, Plant Signal. Behav., 2018, vol. 13: e1514895. https://doi.org/10.1080/15592324.2018.1514895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tyburski, J., Dunajska-Ordak, K., Skorupa, M., and Tretyn, A., Role of ascorbate in the regulation of the Arabidopsis thaliana root growth by phosphate availability, J. Bot., 2012, vol. 2012: e580342. https://doi.org/10.1155/2012/580342

    Article  CAS  Google Scholar 

  80. Schopfer, P., Hydroxyl radical-induced cell wall loosening in vitro and in vivo: implications for the control of elongation growth, Plant J., 2001, vol. 28, p. 679.

    Article  CAS  PubMed  Google Scholar 

  81. Liso, R., de Tullio, M.C., Ciraci, S., Balestrini, R., La Rocca, N., Bruno, L., Chiappetta, A., Bitonti, M.B., Bonfante, P., and Arrigoni, O., Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L., J. Exp. Bot., 2004, vol. 55, p. 2589.

    Article  CAS  PubMed  Google Scholar 

  82. Bočová, B., Mistrík, I., Pavlovkin, J., and Tamás, L., Cadmium disrupts apoplastic ascorbate redox status in barley root tips, Acta Physiol. Plant., 2012, vol. 34, p. 2297.

  83. Maia, J.M., Voigt, E.L., Ferreira-Silva, S.L., Fontenele, A.V., Macedo, C.E.C., and Silveira, J.A.G., Differences in cowpea root growth triggered by salinity and dehydration are associated with oxidative modulation involving types I and III peroxidases and apoplastic ascorbate, J. Plant Growth Regul., 2013, vol. 32, p. 376.

    Article  CAS  Google Scholar 

  84. Sharova, E. and Romanova, A., Ascorbate in the apoplast of elongating plant cells, Biol. Commun., 2018, vol. 63, p. 77.

    Article  Google Scholar 

  85. Takahama, U., Hirotsu, M., and Oniki, T., Age-dependent changes in levels of ascorbic acid and chlorogenic acid, and activities of peroxidase and superoxide dismutase in the apoplast of tobacco leaves: mechanism of the oxidation of chlorogenic acid in the apoplast, Plant Cell Physiol., 1999, vol. 40, p. 716.

    Article  CAS  Google Scholar 

  86. Cheng, F.Y., Burkey, K.O., Robinson, J.M., and Booker, F.L., Leaf extracellular ascorbate in relation to O3 tolerance of two soybean cultivars, Environ. Pollut., 2007, vol. 150, p. 355.

    Article  CAS  PubMed  Google Scholar 

  87. Feng, Z., Pang, J., Nouchi, I., Kobayashi, K., Yamakawa, T., and Zhu, J., Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions, Environ. Pollut., 2010, vol. 158, p. 3539.

    Article  CAS  PubMed  Google Scholar 

  88. Pinedo, M., Lechner, L., Creus, C., Simontacchi, M., and Aguirrezaba, L., Endogenous ascorbate restrains apoplastic peroxidase activity during sunflower leaf development, Plant Biol., 2013, vol. 15, p. 60.

    Article  CAS  PubMed  Google Scholar 

  89. Takahama, U., Changes induced by abscisic acid and light in the redox state of ascorbate in the apoplast of epicotyls of Vigna angularis,Plant Cell Physiol., 1994, vol. 35, p. 975.

    Article  CAS  Google Scholar 

  90. Takahama, U., Effects of fusicoccin and indole-3-acetic acid on the levels of ascorbic acid and dehydroascorbic acid in the apoplast during elongation of epicotyl segments of Vigna angularis,Physiol. Plant., 1996, vol. 98, p. 731.

    Article  CAS  Google Scholar 

  91. Sharova, E.I., Bilova, T.E., and Medvedev, S.S., Axial changes in apoplast properties in the elongation zone of maize mesocotyl, Russ. J. Plant Physiol., 2012, vol. 59, p. 565.

    Article  CAS  Google Scholar 

  92. Jeong, J., Merkovich, A., Clyne, M., and Connolly, E.L., Directing iron transport in dicots: regulation of iron acquisition and translocation, Curr. Opin. Plant Biol., 2017, vol. 39, p. 106.

    Article  CAS  PubMed  Google Scholar 

  93. Chen, Y.T., Wang, Y., and Yeh, K.C., Role of root exudates in metal acquisition and tolerance, Curr. Opin. Plant Biol., 2017, vol. 39, p. 66.

    Article  CAS  PubMed  Google Scholar 

  94. Lane, D.J.R. and Lawen, A., Ascorbate and plasma membrane electron transport—enzymes vs. efflux, Free Radic. Biol. Med., 2009, vol. 47, p. 485.

    Article  CAS  PubMed  Google Scholar 

  95. Vainonen, J.P. and Kangasjärvi, J., Plant signalling in acute ozone exposure, Plant Cell Environ., 2015, vol. 38, p. 240.

    Article  CAS  PubMed  Google Scholar 

  96. Conklin, P.L. and Barth, C., Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence, Plant Cell Environ., 2004, vol. 27, p. 959.

    Article  CAS  Google Scholar 

  97. Burkey, K.O., Neufeld, H.S., Souza, L., Chappelka, A.H., and Davison, A.W., Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers, Environ. Pollut., 2006, vol. 143, p. 427.

    Article  CAS  PubMed  Google Scholar 

  98. Dai, L., Feng, Z., Pan, X., Xu, Y., Li, P., Lefohn, A.S., Harmens, H., and Kobayashi, K., Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar, Environ. Pollut., 2019, vol. 245, p. 380.

    Article  CAS  PubMed  Google Scholar 

  99. Booker, F.L., Burkey, K.O., and Jones, A.M., Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L., Plant Cell Environ., 2012, vol. 35, p. 1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T.A., and Pottosin, I., Calcium transport across plant membranes: a mechanistic basis and roles in the plant physiology, New Phytol., 2018, vol. 220, p. 49.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-04-00862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Sharova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any research involving humans and animals as research subjects.

Additional information

Abbreviations: AA—ascorbic acid; ALMT—aluminum-activated malate transporters; AO—ascorbate oxidase; APX—ascorbate peroxidase; DHA—dehydroascorbic acid; GLUT—glucose transporters; GORK—guard cell outwardly rectifying K+ channels; MDHA—monodehydroascorbic acid; NAT—nucleobase ascorbate transporters; PM—plasma membrane; PRX—guaiacol peroxidase; ROS—reactive oxygen species; SVCT— sodium vitamin C transporters; VRAC—volume-regulated anion channels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharova, E.I., Medvedev, S.S. & Demidchik, V.V. Ascorbate in the Apoplast: Metabolism and Functions. Russ J Plant Physiol 67, 207–220 (2020). https://doi.org/10.1134/S1021443720020156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720020156

Keywords:

Navigation