Skip to main content
Log in

Resolvent estimates for the magnetic Schrödinger operator in dimensions \(\ge 2\)

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

It is well known that the resolvent of the free Schrödinger operator on weighted \(L^2\) spaces has norm decaying like \(\lambda ^{-\frac{1}{2}}\) at energy \(\lambda \). There are several works proving analogous high frequency estimates for magnetic Schrödinger operators, with large long or short range potentials, in dimensions \(n \ge 3\). We prove that the same estimates remain valid in all dimensions \(n \ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Burq, N., Dos Santos Ferreira, D., Krupchyk, K.: From semiclassical Strichartz estimates to uniform \(L^p\) resolvent estimates on compact manifolds. Int. Math. Res. Not. 16, 5178–5218 (2018)

    Article  Google Scholar 

  3. Cardoso, F., Cuevas, C., Vodev, G.: High frequency resolvent estimates for perturbations by large long-range magnetic potentials and applications to dispersive estimates. Ann. Henri Poincaré 14(1), 95–117 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cardoso, F., Cuevas, C., Vodev, G.: Resolvent estimates for perturbations by large magnetic potentials. J. Math. Phys. 55(2), 023502 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cherrier, P., Milani, A.: Linear and Quasi-Linear Evolution Equations in Hilbert Spaces. Graduate Studies in Mathematics, vol. 125. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  6. Erdogan, M.B., Goldberg, M., Schlag, W.: Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in \({\mathbb{R}}^3\). J. EMS 10(2), 507–531 (2008)

    MATH  Google Scholar 

  7. Erdogan, M.B., Goldberg, M., Schlag, W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21(4), 687–722 (2009)

    Article  MathSciNet  Google Scholar 

  8. Eskin, G.: The Analysis of Linear Partial Differential Operators. Graduate Studies in Mathematics, vol. 123. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  9. Goldberg, M.: Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete Contin. Dyn. Syst. 31(1), 109–118 (2011)

    Article  MathSciNet  Google Scholar 

  10. Guillarmou, C., Hassell, A., Krupchyk, K.: Eigenvalue bounds for non-self-adjoint Schrödinger operators with non-trapping metrics (2017). arXiv:1709.09759 [math.AP]

  11. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I–IV. Springer, Berlin (1983–1985)

  12. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I–IV. Academic Press, London (1975–1980)

  13. Robert, D.: Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien. Ann. l’ENS 25, 107–134 (1992)

    MATH  Google Scholar 

  14. Rodnianski, I., Tao, T.: Effective limiting absorption principles, and applications. Commun. Math. Phys. 333(1), 1–95 (2015)

    Article  MathSciNet  Google Scholar 

  15. Vodev, G.: Resolvent estimates for the magnetic Schrödinger operator. Anal. PDE 7(7), 1639–1648 (2014)

    Article  MathSciNet  Google Scholar 

  16. Yafaev, D.R.: Mathematical Scattering Theory. Analytic Theory. AMS, New York (2010)

    Book  Google Scholar 

  17. Zubeldia, M.: The forward problem for the electromagnetic Helmholtz equation, PhD Thesis (2012)

  18. Zubeldia, M.: Limiting absorption principle for the electromagnetic Helmholtz equation with singular potentials. Proc. R. Soc. Edinb. Sect. A 144(4), 857–890 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal J. Meroño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C.M. was supported by Spanish government predoctoral Grant BES-2015-074055 and projects MTM2014-57769-C3-1-P and MTM2017-85934-C3-3-P. L.P. and M.S. were supported by the Academy of Finland (Centre of Excellence in Inverse Modeling and Imaging, Grant Nos. 284715 and 309963) and by the European Research Council under Horizon 2020 (ERC CoG 770924).

A Appendix

A Appendix

We now show that H is self-adjoint with form domain \(H^1\). We define the sesquilinear form \(q_H(u,v) := (u,Hv)\) for \(u \in H^1\) and \(v \in C^\infty _c\). Under these assumptions, by integration by parts one can show that

$$\begin{aligned} q_H(u,v) = (Du, D v) + (Du,Wv) + (Wu,Dv) + (u,(V + |W|^2) v). \end{aligned}$$
(A.1)

Then, since \(W \in L^\infty ({\mathbb {R}}^n, {\mathbb {R}}^n) \), \(q_H(u,v)\) makes sense for all \(u,v\in H^1\).

Proposition A.1

Let \(W \in L^\infty ({\mathbb {R}}^n, {\mathbb {R}}^n) \) and \(V \in L^\infty ({\mathbb {R}}^n, {\mathbb {R}}) \). Then there is a unique self-adjoint operator H with form domain \(H^1\), such that (A.1) holds for all \(u,v \in H^1\).

Proof

The proof follows from [12, Theorem X.17]. Thanks to this theorem, it is enough to show that the form \(q_H\) is relatively bounded with respect to the form associated to the negative Laplacian, that is \(q_{-\varDelta }(u,v) = (Du, D v)\). This is immediate by Young’s inequality. If \(u\in H^1\), for every \(\varepsilon >0\) one has

$$\begin{aligned}&|(Du,Wu) + (Wu,Du) + (u,(V + |W|^2) u)| \\&\qquad \le \varepsilon ||\nabla u ||^2 + ((\varepsilon ^{-1}+1)||W ||_{L^\infty }^2 +||V ||_{L^\infty }) ||u ||^2 , \end{aligned}$$

so actually the relative bound is zero. \(\square \)

We now give the proof of a couple of auxiliary results used in the paper.

Proof of Lemma 2.3

We have that

$$\begin{aligned} {{\tilde{\varphi }}}_0(r)&= \langle r \rangle , \qquad \qquad \qquad \quad \ {{\tilde{\varphi }}}_0'(r) = r \langle r \rangle ^{-1},\\ \psi _0'(r)&= (2\delta -1) r \langle r \rangle ^{-2\delta -1}, \quad \psi _0''(r) = (2\delta -1) \langle r \rangle ^{-2\delta -3}\left( 1-2\delta r^2 \right) . \end{aligned}$$

First, we combine the first and third terms on the right hand side of (2.4) and show that

$$\begin{aligned} \left( e^{\tau \psi } ({{\tilde{\varphi }}}_0 \psi _0''(r) + 2 \tilde{\varphi }_0'(r) \psi _0'(r)) \partial _r u,\partial _r u \right) > \alpha ( e^{\tau \psi } \langle r \rangle ^{-2\delta } \partial _r u, \partial _r u), \end{aligned}$$
(A.2)

for \(\alpha = (2-2\delta )(2\delta -1)\). This follows from the fact that

$$\begin{aligned} {{\tilde{\varphi }}}_0(r) \psi _0''(r) + 2{{\tilde{\varphi }}}_0'(r) \psi _0'(r)&= (2\delta -1) \langle r \rangle ^{-2\delta -2}(1+(2-2\delta )r^2) \\&> (2-2\delta )(2\delta -1) \langle r \rangle ^{-2\delta }, \end{aligned}$$

since \(0<2-2\delta <1\). Then, using (A.2) in (2.4) we obtain that

$$\begin{aligned} (\varphi ''(x) \nabla u,\nabla u)\ge & {} \alpha \tau ( e^{\tau \psi } \langle r \rangle ^{-2\delta } \partial _r u, \partial _r u) \nonumber \\&+\, \tau ^2 (e^{\tau \psi } {{\tilde{\varphi }}}_0 (\psi _0'(r))^2 \partial _r u, \partial _r u) + \tau ( e^{\tau \psi } {{\tilde{\varphi }}}_0 \frac{\psi _0'}{r} \nabla ^{\perp } u,\nabla ^{\perp } u) .\nonumber \\ \end{aligned}$$
(A.3)

Therefore, using that \({{\tilde{\varphi }}}_0 \frac{\psi _0'}{r} = (2\delta -1) \langle r \rangle ^{-2\delta }\), and that \(\alpha < (2\delta -1)\) we get

$$\begin{aligned} (\varphi ''(x) \nabla u,\nabla u)\ge & {} \alpha \tau ( e^{\tau \psi } \langle r \rangle ^{-2\delta } \nabla u, \nabla u) \nonumber \\&+\, \tau ^2 (e^{\tau \psi } {{\tilde{\varphi }}}_0 (\psi _0'(r))^2 \partial _r u, \partial _r u). \end{aligned}$$
(A.4)

This yields (2.5). (2.6) follows by direct computation. \(\square \)

Proof of Lemma 4.3

The proof is similar to [15, Lemma 3.2]. First we define \({{\widetilde{\psi }}} := \tau ^{-1}k \log w +\frac{1}{2}\psi \), so that we have \( w^k e^{\frac{1}{2}\tau \psi }=e^{\tau {{\widetilde{\psi }}}} \). By the conditions assumed on \(\varphi \) and since \(\tau \ge 1\), we have that \(|\nabla {{\widetilde{\psi }}}|, |\varDelta {{\widetilde{\psi }}}| \le C(k)\), where we remark that \(C(k) \ge 1\) can be chosen to be independent of h and \(\tau \). By direct computation we get

$$\begin{aligned} w^k(G_{h,\tau }-i)w^{-k}v&= (e^{\tau \widetilde{\psi }}h^2\,(P+2W^L\cdot D -i\mathrm {div}( W^L) +V^L)\,e^{-\tau \widetilde{\psi }}- i)\, v \\&= (h^2P-i)v + Q_{h,\tau } v, \end{aligned}$$

where \(Q_{h,\tau }\) is a first order operator defined by

$$\begin{aligned} \begin{aligned} Q_{h,\tau } v&= h^2 \left( - \tau ^2 | \nabla {\widetilde{\psi }} |^2 + \tau \,\varDelta {{\widetilde{\psi }}} +2i \tau W^L\cdot \nabla {{\widetilde{\psi }}} - i\mathrm {div}(W^L) + V^L \right) v \\&\quad + 2\, h(\tau \nabla {{\widetilde{\psi }}} -i W^L) \cdot h\nabla v. \end{aligned} \end{aligned}$$
(A.5)

Using the Fourier transform, one can easily check that

$$\begin{aligned} ||(h^2P\, -i)^{-1}v ||_{H^{1+a}_{scl}}\le 2|| v ||_{H^{-1+a}_{scl}}. \end{aligned}$$

We also consider the resolvent identity

$$\begin{aligned} (h^2 P -i + Q_{h,\tau } )^{-1}=(h^2 P -i)^{-1} +(h^2 P -i)^{-1} Q_{h,\tau } (h^2 P -i + Q_{h,\tau } )^{-1}, \end{aligned}$$

which allows us to show that

$$\begin{aligned} \begin{aligned} || (h^2 P -i + Q_{h,\tau } )^{-1}v ||_{H_{scl}^{1+a}}&\le 2|| v ||_{H^{-1+a}_{scl}} + 2|| Q_{h,\tau } ||_{ {\mathcal {L}}(H_{scl}^{1+a},\, H_{scl}^{-1+a})} \\&\qquad \times || (h^2 P -i + Q_{h,\tau } )^{-1}v ||_{H_{scl}^{1+a}}. \end{aligned} \end{aligned}$$
(A.6)

Then, since \(a=0,1\), taking the \(L^2\) norm of (A.5) we obtain

$$\begin{aligned} || Q_{h,\tau } ||_{ {\mathcal {L}}(H_{scl}^{1+a},\, H_{scl}^{-1+a})} \le || Q_{h,\tau } ||_{ {\mathcal {L}}(H_{scl}^{1+a},\, L^2)}\le \frac{1}{4}, \end{aligned}$$

whenever

$$\begin{aligned} h< \tau ^{-1} 18C(k)^2(1+|| W^L ||_{L^\infty } + || V^L ||_{L^\infty } + || \nabla \cdot W^L ||_{L^\infty })^{-1}. \end{aligned}$$

This implies the desired result by absorbing the second term on the right hand side of (A.6) in the left. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meroño, C.J., Potenciano-Machado, L. & Salo, M. Resolvent estimates for the magnetic Schrödinger operator in dimensions \(\ge 2\). Rev Mat Complut 33, 619–641 (2020). https://doi.org/10.1007/s13163-019-00316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00316-z

Keywords

Mathematics Subject Classification

Navigation