Skip to main content
Log in

Different notions of Sierpiński–Zygmund functions

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

A function \(f:{{\mathbb {R}}}\rightarrow {{\mathbb {R}}}\) is Sierpiński–Zygmund, \(f\in {{\,\mathrm{SZ}\,}}(\mathrm {C})\), provided its restriction \(f{\restriction }M\) is discontinuous for any \(M\subset {{\mathbb {R}}}\) of cardinality continuum. Often, it is slightly easier to construct a function \(f:{{\mathbb {R}}}\rightarrow {{\mathbb {R}}}\), denoted as \(f\in {{\,\mathrm{SZ}\,}}(\mathrm {Bor})\), with a seemingly stronger property that \(f{\restriction }M\) is not Borel for any \(M\subset {{\mathbb {R}}}\) of cardinality continuum. It has been recently noticed that the properness of the inclusion \({{\,\mathrm{SZ}\,}}(\mathrm {Bor})\subseteq {{\,\mathrm{SZ}\,}}(\mathrm {C})\) is independent of ZFC. In this paper we explore the classes \({{\,\mathrm{SZ}\,}}(\Phi )\) for arbitrary families \(\Phi \) of partial functions from \({{\mathbb {R}}}\) to \({{\mathbb {R}}}\). We investigate additivity and lineability coefficients of the class \({{\mathbb {S}}}:={{\,\mathrm{SZ}\,}}(\mathrm {C}){\setminus } {{\,\mathrm{SZ}\,}}(\mathrm {Bor})\). In particular we show that if \({{\mathfrak {c}}}=\kappa ^+\) and \({{\mathbb {S}}}\ne \emptyset \), then the additivity of \({{\mathbb {S}}}\) is \(\kappa \), that \({{\mathbb {S}}}\) is \({{\mathfrak {c}}}^+\)-lineable, and it is consistent with ZFC that \({{\mathbb {S}}}\) is \({{\mathfrak {c}}}^{++}\)-lineable. We also construct several examples of functions from \({{\,\mathrm{SZ}\,}}(\mathrm {C}){\setminus } {{\,\mathrm{SZ}\,}}(\mathrm {Bor})\) that belong also to other important classes of real functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The proof in [18] (and [17]) that, under CPA, \(\mathrm{dec}(\mathrm{D}^n,\mathrm{C}^n)<{{\mathfrak {c}}}\) has a gap—it relies on a false lemma. This has been corrected in [19].

  2. Note that this cannot be done in ZFC, since the number of sets \(T_s\) in (\(J_{\alpha }\)) that we need consider (and also sets in \(I_{\alpha }\))) is \(>{{\mathfrak {c}}}\).

References

  1. Aron, R.M., Bernal González, L., Pellegrino, D.M., Seoane Sepúlveda, J.B.: Lineability the Search for Linearity in Mathematics, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  2. Balcerzak, M., Bartoszewicz, A., Filipczak, M.: Nonseparable spaceability and strong algebrability of sets of continuous singular functions. J. Math. Anal. Appl. 407(2), 263–269 (2013). https://doi.org/10.1016/j.jmaa.2013.05.019

    Article  MathSciNet  MATH  Google Scholar 

  3. Balcerzak, M., Ciesielski, K., Natkaniec, T.: Sierpiński–Zygmund functions that are Darboux, almost continuous, or have a perfect road. Arch. Math. Logic 37(1), 29–35 (1997). https://doi.org/10.1007/s001530050080

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartoszewicz, A., Bienias, M., Filipczak, M., Gła̧b, S.: Strong \({\mathfrak{c}}\)-algebrability of strong Sierpiński–Zygmund, smooth nowhere analytic and other sets of functions. J. Math. Anal. Appl. 412(2), 620–630 (2014). https://doi.org/10.1016/j.jmaa.2013.10.075

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartoszewicz, A., Bienias, M., Gła̧b, S., Natkaniec, T.: Algebraic structures in the sets of surjective functions. J. Math. Anal. Appl. 441(2), 574–585 (2016). https://doi.org/10.1016/j.jmaa.2016.04.013

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartoszewicz, A., Gła̧b, S., Pellegrino, D., Seoane-Sepúlveda, J.B.: Algebrability, non-linear properties, and special functions. Proc. Am. Math. Soc. 141(10), 3391–3402 (2013). https://doi.org/10.1090/S0002-9939-2013-11641-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.) 51(1), 71–130 (2014). https://doi.org/10.1090/S0273-0979-2013-01421-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Blumberg, H.: New properties of all real functions. Trans. Am. Math. Soc. 24(2), 113–128 (1922). https://doi.org/10.2307/1989037

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, J.B.: Restriction theorems in real analysis. Real Anal. Exch. 20(2), 510–526 (1994/95)

  10. Cichoń, J., Morayne, M.: Universal functions and generalized classes of functions. Proc. Am. Math. Soc. 102(1), 83–89 (1988). https://doi.org/10.2307/2046036

    Article  MathSciNet  MATH  Google Scholar 

  11. Cichoń, J., Morayne, M., Pawlikowski, J., Solecki, S.: Decomposing Baire functions. J. Symb. Logic 56(4), 1273–1283 (1991). https://doi.org/10.2307/2275474

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciesielski, K.: Set-theoretic real analysis. J. Appl. Anal. 3(2), 143–190 (1997). https://doi.org/10.1515/JAA.1997.143

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciesielski, K.C., Martínez-Gómez, M.E., Seoane-Sepúlveda, J.B.: “Big” continuous restrictions of arbitrary functions. Am. Math. Mon. 126(6), 547–552 (2019). https://doi.org/10.1080/00029890.2019.1586263

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciesielski, K., Miller, A.W.: Cardinal invariants concerning functions whose sum is almost continuous. Real Anal. Exch. 20(2), 657–672 (1994/95)

  15. Ciesielski, K., Natkaniec, T.: Algebraic properties of the class of Sierpiński–Zygmund functions. Topol. Appl. 79(1), 75–99 (1997). https://doi.org/10.1016/S0166-8641(96)00128-9

    Article  MATH  Google Scholar 

  16. Ciesielski, K., Natkaniec, T.: On Sierpiński–Zygmund bisections and their inverses. Topol. Proc. 22, 155–164 (1997)

    MATH  Google Scholar 

  17. Ciesielski, K., Pawlikowski, J.: The Covering Property Axiom, CPA: A Combinatorial Core of the Iterated Perfect Set Model, Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  18. Ciesielski, K., Pawlikowski, J.: Small coverings with smooth functions under the covering property axiom. Can. J. Math. 57(3), 471–493 (2005). https://doi.org/10.4153/CJM-2005-020-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Ciesielski, K.C., Seoane-Sepúlveda, J.B.: Simultaneous small coverings by smooth functions under the covering property axiom. Real Anal. Exch. 43(2), 359–386 (2018). https://doi.org/10.14321/realanalexch.43.2.0359

    Article  MathSciNet  MATH  Google Scholar 

  20. Ciesielski, K.C., Seoane-Sepúlveda, J.B.: Differentiability versus continuity: restriction and extension theorems and monstrous examples. Bull. Am. Math. Soc. 56(2), 211–260 (2019). https://doi.org/10.1090/bull/1635

    Article  MathSciNet  MATH  Google Scholar 

  21. Ciesielski, K.C., Seoane-Sepúlveda, J.B.: A century of Sierpiński–Zygmund functions. Rev. R. Acad. Cienc. Exactas Fuis. Nat. Ser. A Mat. RACSAM 113(4), 3863–3901 (2019). https://doi.org/10.1007/s13398-019-00726-0

    Article  MATH  Google Scholar 

  22. Darji, U.B.: A Sierpiński–Zygmund function which has a perfect road at each point. Colloq. Math. 64(2), 159–162 (1993). https://doi.org/10.4064/cm-64-2-159-162

    Article  MathSciNet  MATH  Google Scholar 

  23. Darji, U.B.: Decomposition of functions, Invited talk during the 19th summer symposium in real analysis. Real Anal. Exch. 21(1), 19–25 (1995)

    Article  MathSciNet  Google Scholar 

  24. Gámez-Merino, J.L., Muñoz-Fernández, G.A., Sánchez, V.M., Seoane-Sepúlveda, J.B.: Sierpiński–Zygmund functions and other problems on lineability. Proc. Am. Math. Soc. 138(11), 3863–3876 (2010). https://doi.org/10.1090/S0002-9939-2010-10420-3

    Article  MATH  Google Scholar 

  25. Gámez, J.L., Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B.: Lineability and additivity in \({{\mathbb{R}}}^{\mathbb{R}}\). J. Math. Anal. Appl. 369(1), 265–272 (2010). https://doi.org/10.1016/j.jmaa.2010.03.036

    Article  MathSciNet  MATH  Google Scholar 

  26. Gámez-Merino, J.L., Seoane-Sepúlveda, J.B.: An undecidable case of lineability in \({\mathbb{R}}^{\mathbb{R}}\). J. Math. Anal. Appl. 401(2), 959–962 (2013). https://doi.org/10.1016/j.jmaa.2012.10.067

    Article  MathSciNet  MATH  Google Scholar 

  27. García, D., Grecu, B.C., Maestre, M., Seoane-Sepúlveda, J.B.: Infinite dimensional Banach spaces of functions with nonlinear properties. Math. Nachr. 283(5), 712–720 (2010). https://doi.org/10.1002/mana.200610833

    Article  MathSciNet  MATH  Google Scholar 

  28. García-Pacheco, F.J., Palmberg, N., Seoane-Sepúlveda, J.B.: Lineability and algebrability of pathological phenomena in analysis. J. Math. Anal. Appl. 326(2), 929–939 (2007). https://doi.org/10.1016/j.jmaa.2006.03.025

    Article  MathSciNet  MATH  Google Scholar 

  29. Gibson, R.G., Natkaniec, T.: Darboux like functions. Real Anal. Exch. 22(2), 492–533 (1996/97)

  30. Jordan, F.: Cardinal invariants connected with adding real functions. Real Anal. Exch. 22(2), 696–713 (1996/97)

  31. Jordan, F.: Cardinal numbers connected with adding Darboux-like functions, Ph. D. dissertation, West Virginia University, USA (1998)

  32. Kechris, A.S.: Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)

    Book  Google Scholar 

  33. Kellum, K.R.: Almost continuity and connectivity-sometimes it’s as easy to prove a stronger result. Real Anal. Exch. 8(1), 244–252 (1982/83)

  34. Kharazishvili, A.B.: Strange Functions in Real Analysis. Pure and Applied Mathematics, vol. 272, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  35. Kunen, K.: Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland Publishing Co., Amsterdam (1980)

    MATH  Google Scholar 

  36. Laczkovich, M.: Differentiable restrictions of continuous functions. Acta Math. Hung. 44(3–4), 355–360 (1984). https://doi.org/10.1007/BF01950290

    Article  MathSciNet  MATH  Google Scholar 

  37. Natkaniec, T.: Almost continuity. Real Anal. Exch. 17(2), 462–520 (1991/92)

  38. Natkaniec, T.: New cardinal invariants in real analysis. Bull. Polish Acad. Sci. Math. 44(2), 251–256 (1996)

    MathSciNet  MATH  Google Scholar 

  39. Natkaniec, T., Rosen, H.: An example of an additive almost continuous Sierpiński–Zygmund function. Real Anal. Exch. 30(1), 261–265 (2004/05)

  40. Natkaniec, T., Rosen, H.: Additive Sierpiński–Zygmund functions. Real Anal. Exch. 31(1), 253–269 (2005/06)

  41. Płotka, K.: On functions whose graph is a Hamel basis. Proc. Am. Math. Soc. 131(4), 1031–1041 (2003). https://doi.org/10.1090/S0002-9939-02-06620-0

    Article  MathSciNet  MATH  Google Scholar 

  42. Płotka, K.: Darboux-like functions within the class of Hamel functions. Real Anal. Exch. 34(1), 115–126 (2008/2009)

  43. Sierpiński, W., Zygmund, A.: Sur une fonction qui est discontinue sur tout ensemble de puissance du continu. Fundam. Math. 4, 316–318 (1923)

    Article  Google Scholar 

  44. Stallings, J.: Fixed point theorems for connectivity maps. Fundam. Math. 47, 249–263 (1959). https://doi.org/10.4064/fm-47-3-249-263

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Prof. J.B. Seoane-Sepúlveda for his help in improving this paper’s presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Chris Ciesielski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciesielski, K.C., Natkaniec, T. Different notions of Sierpiński–Zygmund functions. Rev Mat Complut 34, 151–173 (2021). https://doi.org/10.1007/s13163-020-00348-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-020-00348-w

Keywords

Mathematics Subject Classification

Navigation