Skip to main content
Log in

Application of Empirical Orthogonal Functions Parameterization in the Problem of Retrieval of the Tropospheric Thermal Structure by Radiometric Data

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe the mathematical tools of the optimal estimation method for retrieval of tropospheric temperature profiles (0–10 km) from radiometric data with the desired profiles parameterized in the form of expansion over empirical orthogonal functions obtained by a singular analysis of the covariance matrix of the radiosonde measurement data. It is shown that within the framework of such an approach one can use a high-resolution altitude grid for a relatively small dimensionality of the inverse problem. This permits one to properly analyze the statistics of radiosonde measurements and, at the same time, retrieve the temperature profiles without using a large computing power. We have conducted test retrievals of temperature using a large ensemble of simulated noisy spectra of atmospheric self-radiation based on the statistics of radiosonde temperature measurements above Nizhny Novgorod. It is found that the r.m.s. error of temperature retrieval from spectra in frequency ranges 50–55 GHz, 55–59 GHz, and 50–59 GHz varies within the ranges 0.5–2.7 K (at altitudes of 0–10 km), 0.3–1 K (at altitudes of 0–2 km), and 0.3–2.8 K (at altitudes of 0–10 km), respectively. The optimal number of empirical orthogonal functions (dimensionality of the problem) is 6–8 in the case of the 50–55 GHz spectra, 8 in the case of the 55–59 GHz spectra, and 10 in the case of the 50–59 GHz spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.P. Shakina and A.V. Ivanova, Forecast of Meteorological Conditions for Aircraft [in Russian], Triada Ltd, Moscow (2016).

    Google Scholar 

  2. library.wmo.int .

  3. Yu.M.Timofeev, Global System for Monitoring of the Atmosphere Parameters and Earth’s Surface [in Russian], Physical Faculty of the St. Petersburg State University, St. Petersburg (2010).

    Google Scholar 

  4. E. R.Westwater, Y. Han, V. G. Irisov, V. Leuvskiy, et al., J. Atmosph. Ocean. Technol., 16, 805 (1999).

    Article  ADS  Google Scholar 

  5. E. N.Kadygrov, A.G.Gorelik, E.A.Miller, et al., Opt. Atmos. Okeana, 26, 459 (2013).

    Google Scholar 

  6. E. N.Kadygrov, I.N.Kuznetsova, E. V. Gan’shin, et al., Opt. Atmos. Okeana, 30, No. 6, 502 (2017).

    Article  Google Scholar 

  7. P. W.Chan, Meteorologische Zeitschrift, 18, 253 (2009).

    Article  ADS  Google Scholar 

  8. C. A. Barrere, M. Eilts, Jr., J. Johnson, et al., in: Proc. 13th Conf. Aviation, Range, and Aerospace Met., 21–24 January 2008, New Orleans, USA, Rep. No. 4.7.

  9. B. L. Shaw, C. A. Barrere, Jr., R. L.Carpenter, Jr., and P. L. Spencer, in: 13th Conf. Aviation, Range, and Aerospace Meteorology, 21–24 January 2008, New Orleans, USA.

  10. A.Madhulatha, J.P.George, and E.N.Rajagopal, J. Geophys. Res., 118, No. 1, 1 (2013).

    Google Scholar 

  11. J.Guldner, Atmos. Meas. Tech., 6, 2879 (2013).

    Article  Google Scholar 

  12. D.Cimini, V.Rizi, P. D.Cirolamo, et al., Atmos. Meas. Tech., 7, 2981 (2014).

    Article  Google Scholar 

  13. D.Cimini, M.Nelson, J. Güldner, and R. Ware, Atmos. Meas. Tech., 8, 315 (2015).

    Article  Google Scholar 

  14. R.Ware, D.Cimini, E.Campos, et al., Atmospheric Res., 132–133, 278 (2013).

    Article  ADS  Google Scholar 

  15. G. Massaro, I. Stiperski, B. Pospichal, and M. W. Rotach, Atmos. Meas. Tech., 8, 3355 (2015).

    Article  Google Scholar 

  16. “Instrument operation and software guide: operation principles and software description for RPG standard single polarization radiometers (G5 series);” http://www.radiometerphysics.de/download/PDF/Radiometers/HATPRO/RPG MWR STD Software Manual G5.pdf.

  17. N. A. Zaitsev, Y. M.Timofeyev, and V. S.Kostsov, Atmosph. Oceanic Optics, 27, No. 5, 386 (2014).

    Article  Google Scholar 

  18. V. S.Kostsov, Yu.M.Timofeyev, N.A. Zaitsev, et al., Int. J. Rem. Sens., 37, No. 14, 3346 (2016).

    Article  Google Scholar 

  19. V. S. Kostsov, Int. J. Rem. Sens., 36, No. 11, 2963 (2015).

    Article  Google Scholar 

  20. V. S. Kostsov, Izv. Atmos. Oceanic Phys., 51, No. 2, 156 (2015).

    Article  ADS  Google Scholar 

  21. H. J. Liebe, Int. J. Infrared Millim. Waves, 10, 631 (1989).

    Article  ADS  Google Scholar 

  22. P.W. Rosenkranz, Absorption of Microwaves by Atmospheric Gases, in: M.A. Janssen, ed., Atmospheric Remote Sensing by Microwave Radiometry, John Wiley & Sons (1993), p. 37.

  23. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific (2000).

  24. U. Lohnert, D.Turner, and S.Crewell, J. Appl. Meteorol. Climatol., 48, 1017 (2009).

    Article  ADS  Google Scholar 

  25. O. Stahli, A.Murk, N.Kampfer, et al., Atmos. Meas. Tech., 6, 2477 (2013).

    Article  Google Scholar 

  26. M. S. Malkevich and V. I.Tatarsky, Kosm. Issled., 3, 444 (1965).

    Google Scholar 

  27. M.Yu.Kataev and A.K. Luk’yanov, Vestnik Volgograd. Gosuniv., Ser. 1: Matem. Fiz ., No. 2 (19), 99 (2013).

  28. A. V. Polyakov, Yu. M.Timofeyev, and Ya. A. Virolainen, Izv. Atmos. Oceanic Phys., 50, No. 3, 330 (2014).

    Article  ADS  Google Scholar 

  29. V. G. Ryskin, A. A. Shvetsov, M.Yu.Kulikov, et al., Radiophys. Quantum Electron., 59, Nos. 8–9, 734 (2016).

    ADS  Google Scholar 

  30. A. A. Shvetsov, V.G. Ryskin, M.Yu.Kulikov, et al., Instrum. Exp. Tech., No. 3, 433 (2016).

  31. A. A.Krasilnikov, M.Yu.Kulikov, L.M.Kukin, et al., Instrum. Exp. Tech., No. 2, 271 (2017).

  32. A.M. Obukhov, Izv. Akad. Nauk. Fiz. Atmos. Okeana, No. 3, 432 (1960).

  33. I.T. Jolliffe, Principal Component Analysis. Springer Ser. in Statistics (2nd ed.), Springer, New York (2002).

  34. G. R.North, T. L.Bell, R. F. Cahalan, and F. J.Moeng, Monthly Weather Rev., 110, No. 7, 699 (1982).

    Article  ADS  Google Scholar 

  35. M.P. Baldwin, D. B. Stephenson, and I.T. Jolliffe, J. Climate, 22, 234 (2009).

    Article  ADS  Google Scholar 

  36. F. Navas-Guzman, M.Kampfer, and A. Haefele, Atmos. Meas. Tech., 9, 4587 (2016).

    Article  Google Scholar 

  37. R. Fletcher, Practical Methods of Optimization (2nd ed.), John Wiley & Sons, New York (2013).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Belikovich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 9, pp. 664–680, September 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belikovich, M.V., Kulikov, M.Y., Ryskin, V.G. et al. Application of Empirical Orthogonal Functions Parameterization in the Problem of Retrieval of the Tropospheric Thermal Structure by Radiometric Data. Radiophys Quantum El 62, 591–605 (2020). https://doi.org/10.1007/s11141-020-10005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10005-3

Navigation