Skip to main content
Log in

Description of Large-Scale Processes in the Near-Earth Space Plasma

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We suggest a solution of the problem of the description of magnetic and electric fields occurring during large-scale nonradiative processes in the collisionless space plasma. The key idea is that the quasi-neutrality condition and the field-aligned force equilibrium of electrons should be taken into account. Equations describing the plasma are divided into two parts, namely, a system of transport equations which describes the plasma motion, and a system of equations for fields. The fields are defined in the instantaneous action approximation via the current spatial distributions of hydrodynamic plasma parameters and boundary conditions obtained from the system of elliptic equations containing no partial time derivatives. Three forms of the generalized Ohm’s law corresponding to different levels of plasma magnetization are considered. It is shown that, depending on the form of a system of transport equations derived for each plasma component, five key variants of the equation system describing the plasma can be obtained from the three forms of the Ohm’s law. The first form of the generalized Ohm’s law refers to the general case in which all plasma components unmagnetized and the system of transport equations represents the Vlasov equations for each plasma component. The second form of the Ohm’s law corresponds to the case of unmagnetized ionic plasma components, while electrons are magnetized and their pressure tensor is expressed through their longitudinal and transverse pressures as well as through the magnetic field. In the latter case two variants of the system of transport equations are possible, and the ions are described by Vlasov equations in both of them. In the first variant, the electrons are described by the Vlasov equation in the drift approximation. In the second variant, the electrons are described by the system of Chew–Goldberger–Low equations of magnetogasdynamics. The third variant of Ohm’s law corresponds to the case in which all plasma components are magnetized, and the pressure tensor of each component is replaced by its expression through the longitudinal and transverse pressure, as well as through the magnetic field. In this case, two variants of the transport equation system are also possible. In the first variant, each component is described by the Vlasov equation in the drift approximation. In the second variant, each component is described by the system of the Chew–Goldberger–Low equations of magnetogasdynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERERNCES

  1. O. V. Mingalev, I. V. Mingalev, Kh. V. Malova, M. N. Mel’nik, and L. M. Zelenyi, Plasma Phys. Rep. 43, 1004 (2017).

    Article  ADS  Google Scholar 

  2. O. V. Mingalev, I. V. Mingalev, Kh. V. Malova, A. M. Merzlyi, and L. M. Zelenyi, Plasma Phys. Rep. 44, 1033 (2018).

    Article  ADS  Google Scholar 

  3. L. I. Rudakov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958, p. 321; Pergamon, New York, 1959), Vol. 3.

  4. R. M. Kulsrud, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983; Energoatomizdat, Moscow, 1983, p. 115), Vol. 1.

  5. V. I. Ilgisonis, Phys. Fluids B 5, 2387 (1993).

    Article  ADS  Google Scholar 

  6. G. Chew, M. Goldberger, and F. Low, Proc. R. Soc. A 236 (1204), 112 (1956).

    ADS  Google Scholar 

  7. G. Chew, M. Goldberger, and F. Low, Problemy sovremennoi fiziki, No. 7, 139 (1957).

  8. T. F. Volkov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

  9. D. Winske, L. Yin, N. Omidi, H. Karimabadi, and K. Quest, in Space Plasma Simulation, Ed. by J. Buchner, M. Scholer, and C. T. Dum (Lect. Notes Phys. Vol. 615; Springer, Berlin, 2003), p. 136.

    Google Scholar 

  10. P. L. Pritchett, IEEE Trans. Plasma Sci. 28, 1976 (2000).

    Article  ADS  Google Scholar 

  11. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

  12. W. C. Knudsen, J. Geophys. Res. 79, 1046 (1974).

    Article  ADS  Google Scholar 

  13. V. A. Vlaskov, Yu. G. Mizun, V. S. Mingalev, G. I. Min-galeva, and T. A. Parfenova, V. N. Krivilev, and T. V. Syrnikova, in Problems in Physics of High-Latitude Ionosphere, Ed. by B. E. Bryunelli (Nauka, Leningrad, 1976), p. 3 [in Russian].

    Google Scholar 

  14. J. D. Huba, G. Joyce, and J. A. Fedder, J. Geophys. Res. 105, 23035 (2000).

    Article  ADS  Google Scholar 

  15. J. D. Huba, G. Joyce, and J. Krall, Geophys. Res. Lett. 35, L10102 (2008). https://doi.org/10.1029/2008GL033509

    Article  ADS  Google Scholar 

  16. J. D. Huba, A. Maute, and G. Crowley, Space Sci. Rev. 212, 731 (2017). https://doi.org/10.1007/s11214-017-0415-z

    Article  ADS  Google Scholar 

  17. A. J. Ridley, Y. Deng, and G. Toth, J. Atmos. Sol.–Terr. Phys. 68, 839 (2006).

    Article  ADS  Google Scholar 

  18. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1966), Vol. 2.

  19. S. I. Braginskii, Ukr. Mat. Zh. 8 (2), 119 (1958).

    MathSciNet  Google Scholar 

  20. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963, p. 201; Consultants Bureau, New York, 1965), Vol. 1.

  21. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Space Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  22. N. N. Bogolyubov and D. N. Zubarev, Ukr. Mat. Zh. 7 (1), 5 (1955).

    Google Scholar 

  23. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974; Gordon & Breach, New York, 1962).

  24. V. F. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Oscillations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  25. D. S. Filippychev, Comput. Math. Model. 11, 15 (2000).

    Article  MathSciNet  Google Scholar 

  26. A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).

    Article  ADS  Google Scholar 

  27. Z. Lin and L. Chen, Phys. Plasmas 8, 1447 (2001).

    Article  ADS  Google Scholar 

  28. I. Holod and Z. Lin, Phys. Plasmas 20, 032309 (2013).

    Article  ADS  Google Scholar 

  29. S. Lu, Phys. Plasmas 22, 052901 (2015).

    Article  ADS  Google Scholar 

  30. D. Winske, Space Sci. Rev. 42, 53 (1985).

    Article  ADS  Google Scholar 

  31. D.V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  32. R. Yu. Luk’yanova, Mat. Model. 29(5), 122 (2017).

Download references

ACKNOWLEDGMENTS

The authors thank A.V. Artemiev and M.V. Klimenko for fruitful discussions.

Funding

The work of O.V. Khabarova was supported by the Russian Foundation for Basic Research (grant no. 19-02-00957), and H.V. Malova acknowledges the support from the state “Plasma” program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Mingalev, I. V. Mingalev or H. V. Malova.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingalev, O.V., Mingalev, I.V., Malova, H.V. et al. Description of Large-Scale Processes in the Near-Earth Space Plasma. Plasma Phys. Rep. 46, 374–395 (2020). https://doi.org/10.1134/S1063780X20030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030083

Keywords:

Navigation