Skip to main content
Log in

Synthesis and Magnetic Properties of the Core–Shell Fe3O4/CoFe2O4 Nanoparticles

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Fe3O4/CoFe2O4 nanoparticles with a core–shell structure with an average size of 5 nm have been obtained by codeposition from the iron and cobalt chloride solutions. An analysis of the magnetic properties of the obtained system and their comparison with the data for single-phase Fe3O4 (4 nm) and CoFe2O4 (6 nm) nanoparticles has led to the conclusion about a noticeable interaction between the soft magnetic (Fe3O4) and hard magnetic (CoFe2O4) phases forming the core and shell of hybrid particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005).

    Article  Google Scholar 

  2. M. B. Gawande, P. S. Branco, and R. S. Varma, Chem. Soc. Rev. 42, 3371 (2013).

    Article  Google Scholar 

  3. T. Dang-Bao, D. Pla, I. Favier, and M. Gómez, Catalysts 7, 207 (2017).

    Article  Google Scholar 

  4. B. Thiesen and A. Jordan, Int. J. Hyperth. 24, 467 (2008).

    Article  Google Scholar 

  5. M.-H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K. Stojak Repa, Z. Nemati, R. Das, Ó. Iglesias, and H. Srikanth, Nanomaterials 6, 221 (2016).

    Article  Google Scholar 

  6. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    ADS  Google Scholar 

  7. S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Y. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman, and O. N. Martyanov, Ceram. Int. 44, 17852 (2018).

    Article  Google Scholar 

  8. S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 111, 44312 (2012).

    Article  Google Scholar 

  9. S. L. Viñas, K. Simeonidis, Z.-A. Li, Z. Ma, E. Myrovali, A. Makridis, D. Sakellari, M. Angelakeris, U. Wiedwald, M. Spasova, and M. Farle, J. Magn. Magn. Mater. 415, 20 (2016).

    Article  ADS  Google Scholar 

  10. J.-H. Lee, J-t. Jang, J-s. Choi, S. H. Moon, S-h. Noh, J-w. Kim, J-G. Kim, I-S. Kim, K. I. Park, and J. Cheon, Nat. Nanotechnol. 6, 418 (2011).

    Article  ADS  Google Scholar 

  11. D. Psimadas, G. Baldi, C. Ravagli, M. Comes Franchini, E. Locatelli, C. Innocenti, C. Sangregorio, and G. Loudos, Nanotechnology 25, 025101 (2014).

    Article  ADS  Google Scholar 

  12. S. H. Moon, A.-H. Noh, J.-H. Lee, T.-H. Shin, Y. Lim, and J. Cheon, Nano Lett. 17, 800 (2017).

    Article  ADS  Google Scholar 

  13. A. S. Kamzin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, I. A. Al-Omari, and C. Nayek, Tech. Phys. Lett. 45, 426 (2019).

    Article  ADS  Google Scholar 

  14. A. S. Kamzin, A. A. Valiullin, H. Khurshid, Z. Nemati, H. Srikanth, and M. H. Phan, Phys. Solid State 60, 382 (2018).

    Article  ADS  Google Scholar 

  15. A. S. Kamzin, D. S. Nikam, and S. H. Pawar, Phys. Solid State 59, 156 (2017).

    Article  ADS  Google Scholar 

  16. J. Robles, R. Das, M. Glassell, M. H. Phan, and H. Srikanth, AIP Adv. 8, 056719 (2018).

    Article  ADS  Google Scholar 

  17. F. Fabris, E. Lima, Jr., C. Quinteros, L. Neser, M. Granada, M. Sirena, R. D. Zysler, H. E. Troiani, V. Leborán, F. Rivadulla, and E. L. Winkler, Phys. Rev. Appl. 11, 054089 (2019).

    Article  ADS  Google Scholar 

  18. D. S. Schmool, Nanosci. Nanotechnol. Lett. 3, 515 (2011).

    Article  Google Scholar 

  19. S. H. Moon, S. Noh, J.-H. Lee, T.-H. Shin, Y. Lim, and J. Cheon, Nano Lett. 17, 800 (2017).

    Article  ADS  Google Scholar 

  20. R. Mansell, T. Vemulkar, D. C. M. C. Petit, Y. Cheng, J. Murphy, M. S. Lesniak, and R. P. Cowburn, Sci. Rep. 7, 4257 (2017).

    Article  ADS  Google Scholar 

  21. Z. Nemati, H. Khurshid, J. Alonso, M. H. Phan, P. Mukherjee, and H. Srikanth, Nanotechnology 26, 405705 (2015).

    Article  Google Scholar 

  22. D. A. Balaev, S. V. Semenov, A. A. Dubrovskiy, S. S. Yakushkin, V. L. Kirillov, and O. N. Martyanov, J. Magn. Magn. Mater. 440, 199 (2017).

    Article  ADS  Google Scholar 

  23. V. L. Kirillov, S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Y. V. Knyazev, O. A. Bayukov, D. A. Velikanov, D. A. Yatsenko, and O. N. Martyanov, Mater. Chem. Phys. 225, 292 (2019).

    Article  Google Scholar 

  24. V. L. Kirillov, D. A. Balaev, S. V. Semenov, K. A. Shaikhutdinov, and O. N. Martyanov, Mater. Chem. Phys. 145, 75 (2014).

    Article  Google Scholar 

  25. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

  26. J. C. Denardin, A. L. Brandl, M. Knobel, P. Panissod, A. B. Pakhomov, H. Liu, and X. X. Zhang, Phys. Rev. B 65, 064422 (2002).

    Article  ADS  Google Scholar 

  27. D. Tobia, E. Winkler, R. D. Zysler, M. Granada, H. E. Troiani, and D. Fiorani, J. Appl. Phys. 106, 103920 (2009).

    Article  ADS  Google Scholar 

  28. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, O. A. Bayukov, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Magn. Magn. Mater. 410, 71 (2016).

    Article  Google Scholar 

  29. D. A. Balaev, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, R. N. Yaroslavtsev, O. A. Bayukov, A. M. Vorotynov, M. N. Volochaev, and A. A. Dubrovskii, Phys. Solid State 58, 1782 (2016).

    Article  ADS  Google Scholar 

  30. D. Caruntu, G. Caruntu, and C. J. O’Connor, J. Phys. D 40, 5801 (2007).

    Article  ADS  Google Scholar 

  31. L. Neel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

  32. W. F. Brown, Phys. Rev. 130, 1677 (1963).

    Article  ADS  Google Scholar 

  33. S. V. Komogortsev, R. S. Iskhakov, A. D. Balaev, A. G. Kudashov, A. V. Okotrub, and S. I. Smirnov, Phys. Solid State 49, 734 (2007).

    Article  ADS  Google Scholar 

  34. S. V. Komogortsev, R. S. Iskhakov, A. D. Balaev, A. V. Okotrub, A. G. Kudashov, N. A. Momot, and S. I. Smirnov, Phys. Solid State 51, 2286 (2009).

    Article  ADS  Google Scholar 

  35. V. Sreeja and P. A. Joy, Mater. Res. Bull. 42, 1570 (2007).

    Article  Google Scholar 

  36. J. Lee, Y.-H. Choa, J. Kim, and K. H. Kim, IEEE Trans. Magn. 47, 2874 (2011).

    Article  ADS  Google Scholar 

  37. Y. Hwang, S. Angappane, J. Park, K. An, T. Hyeon, and J.-G. Park, Curr. Appl. Phys. 12, 808 (2012).

    Article  ADS  Google Scholar 

  38. A. P. Safronov, I. V. Beketov, S. V. Komogortsev, G. V. Kurlyandskaya, A. I. Medvedev, D. V. Leiman, A. Larrañaga, and S. M. Bhagat, AIP Adv. 3, 052135 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 17-12-01111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaev, D.A., Semenov, S.V., Dubrovskii, A.A. et al. Synthesis and Magnetic Properties of the Core–Shell Fe3O4/CoFe2O4 Nanoparticles. Phys. Solid State 62, 285–290 (2020). https://doi.org/10.1134/S1063783420020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420020043

Keywords:

Navigation