Skip to main content
Log in

Pressure Dependence of Structural, Electronic, and Optical Properties of Be0.25Zn0.75O Alloy

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural, electronic, and optical properties of Be0.25Zn0.75O alloy as a function of the pressure have been investigated by using the first-principles density functional theory within the generalized gradient approximation. The results show that the lattice constants decrease and the band gap increases with increasing pressure. The valence band maximum (VBM) moves to lower energy, whereas the conduction band minimum (CBM) moves to higher energy with increasing pressure, so the band gap broadens. The dielectric constant \({{\varepsilon }_{1}}\)(0) and zero-frequency refractive index n(0) decreases monotonically with increasing pressure. The variation of imaginary part of the dielectric function, extinction coefficient, absorption coefficient, and electron energy loss function with different pressure are well described. The curve shape for optical parameters is almost unchanged with increasing pressure, but all the peaks moves to higher energy. Our results provide a theoretical reference for Be0.25Zn0.75O alloy at different pressures to achieve better ZnBeO performance in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. Sun, H. T. Wang, J. He, and Y. Tian, Phys. Rev. B 71, 125132 (2005).

    Article  ADS  Google Scholar 

  2. X. F. Fan, Z. X. Shen, Y. M. Lu, and J.-L. Kuo, New J. Phys. 11, 093008 (2009).

    Article  ADS  Google Scholar 

  3. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  4. S. Benramache, S. Lakel, O. Belahssen, and B. Benhaoua, Optik 126, 2946 (2015).

    Article  ADS  Google Scholar 

  5. Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C. J. Youn, and W. J. Kim, Appl. Phys. Lett. 88, 052103 (2006).

    Article  ADS  Google Scholar 

  6. W. J. Kim, J. H. Leem, M. S. Han, I.-W. Park, Y. R. Ryu, and T. S. Lee, J. Appl. Phys. 99, 096104 (2006).

    Article  ADS  Google Scholar 

  7. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett. 78, 1237 (2001).

    Article  ADS  Google Scholar 

  8. Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, Appl. Phys. Lett. 90, 131115 (2007).

    Article  ADS  Google Scholar 

  9. X. F. Fan, Z. Zhu, Y. S. Ong, Y. M. Lu, Z. X. Shen, and J. L. Kuo, Appl. Phys. Lett. 91, 121121 (2007).

    Article  ADS  Google Scholar 

  10. J. H. Yu, D. S. Park, J. H. Kim, T. S. Jeong, C. J. Youn, and K. J. Hong, J. Mater. Sci. 45, 130 (2010);

    Article  ADS  Google Scholar 

  11. J. Cryst. Growth 312, 1683 (2010).

  12. M. Nakano, A. Tsukazaki, A. Ohtomo, K. Ueno, S. Akasaka, H. Yuji, K. Nakahara, T. Fukumura, and M. Kawasaki, Adv. Mater. 22, 876 (2010).

    Article  Google Scholar 

  13. D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, Adv. Funct. Mater. 17, 264 (2007).

    Article  Google Scholar 

  14. A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Nat. Mater. 9, 889 (2010).

    Article  ADS  Google Scholar 

  15. Y. Chen, P. Reyes, Z. Duan, G. Saraf, R. Wittstruck, Y. Lu, O. Taratula, and E. Galoppini, J. Electron. Mater. 38, 1605 (2009).

    Article  ADS  Google Scholar 

  16. L. Weston, X. Y. Cui, B. Delley, and C. Stampfl, Phys. Rev. B 86, 205322 (2012).

    Article  ADS  Google Scholar 

  17. S. Lakel, F. Elhamra, K. Almi, and H. Meradji, Mater. Sci. Semicond. Proc. 40, 209 (2015).

    Article  Google Scholar 

  18. S. Lakel, F. Elhamra, K. Almi, and H. Meradji, Mater. Sci. Semicond. Proc. 40, 803 (2015).

    Article  Google Scholar 

  19. F. Elhamra, S. Lakel, M. Ibrir, K. Almi, and H. Meradji, Mod. Phys. Lett. B 29, 24 (2015). https://doi.org/10.1142/S0217984915501407

    Article  Google Scholar 

  20. S. F. Ding, G. H. Fan, S. T. Li, K. Chen, and B. Xiao, Phys. B (Amsterdam, Neth.) 394, 127 (2007).

  21. J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, Phys. Rev. B 62, 1660 (2000).

    Article  ADS  Google Scholar 

  22. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).

    ADS  Google Scholar 

  23. P. L. Mao, B. Yu, Z. Liu, F. Wang, and Y. Ju, J. Magn. Alloys 1, 256 (2013).

    Article  Google Scholar 

  24. W. Kohn and L. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  25. J. P. Perdew, K. Burke, and W. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  26. D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    Article  ADS  Google Scholar 

  27. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  28. B. G. Pfrommer, M. Coté, S. G. Louie, and M. L. Cohen, J. Comp. Physiol. 131, 133 (1997).

    Google Scholar 

  29. H. Y. Wu, X. L. Cheng, C. H. Hu, and P. Zhou, Phys. B (Amsterdam, Neth.) 405, 606 (2010).

  30. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2005), p. xix.

    MATH  Google Scholar 

  31. X. Su, P. Si, Q. Hou, X. Kong, and W. Cheng, Phys. B (Amsterdam, Neth.) 404, 1794 (2009).

  32. F.-G. Kuang, X.-Y. Kuang, S.-Y. Kang, M.-M. Zhong, and A.-J. Mao, Mater. Sci. Semicond. Process. 23, 63 (2014).

    Article  Google Scholar 

  33. A. Schleife, F. Fuchs, J. Furthmu ller, and F. Bechstedt, Phys. Rev. B 73, 245212 (2006).

    Article  ADS  Google Scholar 

  34. Y. Zheng, Z. Chen, Lu Yu, Q. Wu, Z. Weng, and Z. Huang, Chin. J. Semicond. 29, 2316 (2008).

    Google Scholar 

  35. K. Osuch, E. B. Lombardi, and W. Gebicki, Phys. Rev. B 73, 075202 (2006).

    Article  ADS  Google Scholar 

  36. F. W. Xie, P. Yang, P. Li, and L. Q. Zhang, Opt. Commun. 285, 2660 (2012).

    Article  ADS  Google Scholar 

  37. B. Lü, X. Zhou, R.-F. Linghu, X.-L. Wang, and X.‑D. Yang, Chin. Phys. B 20, 036104 (2011).

    Article  ADS  Google Scholar 

  38. A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 80, 035112 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Almi.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almi, K., Lakel, S. Pressure Dependence of Structural, Electronic, and Optical Properties of Be0.25Zn0.75O Alloy. Phys. Solid State 62, 260–266 (2020). https://doi.org/10.1134/S106378342002002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342002002X

Keywords:

Navigation