Skip to main content
Log in

Physical Properties of a Frustrated Quasi-One-Dimensional NaCuFe2(VO4)3 Magnet and Effect of Chemical Pressure Induced by the Substitution of Sodium for Lithium

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural, thermal, static magnetic, and resonance properties of the low-dimensional NaCuFe2(VO4)3 compound obtained by the solid-phase synthesis have been investigated. In the temperature range of 110–300 K, the electron spin resonance in the X band with a g factor of 2.008 has been detected. The magnetic properties of a sample with a high frustration level in the paramagnetic, antiferromagnetic, and disordered states have been examined. A shift of the Néel temperature to the high-temperature region in an external magnetic field has been observed. The origin of the disordered magnetism in NaCuFe2(VO4)3 are discussed. The features of substitution of sodium for lithium on the physical properties of the ACuFe2(VO4)3 (A = Na, Li) system have been established. It is shown that the chemical pressure changes the crystal lattice parameters, spacings between magnetic ions, and crystallite size, which is reflected in the physical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Guskos, G. Zolnierkiewicz, J. Typek, R. Szymczak, A. Guskos, P. Berczynski, and A. Blonska-Tabero, Mater. Sci. Poland 31, 601 (2013).

    Article  ADS  Google Scholar 

  2. A. V. Koshelev, K. V. Zakharov, L. V. Shvanskaya, A. A. Shakin, D. A. Chareev, S. Kamusella, H.-H. Klauss, K. Molla, B. Rahaman, T. Saha-Dasgupta, A. P. Pyatakov, O. S. Volkova, and A. N. Vasiliev, Phys. Rev. Appl. 10, 034008 (2018).

    Article  ADS  Google Scholar 

  3. M. A. Lafontaine, J. M. Grenéche, Y. Laligant, and G. Férey, J. Solid State Chem. 108, 1 (1994).

    Article  ADS  Google Scholar 

  4. T. V. Drokina, G. A. Petrakovskii, O. A. Bayukov, A. M. Vorotynov, D. A. Velikanov, and M. S. Molo-keev, Phys. Solid State 58, 1981 (2016).

    Article  ADS  Google Scholar 

  5. Yu. A. Izyumov, Neutron Diffraction on Long-Period Structures (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  6. S. S. Sosin, L. A. Prozorova, and A. I. Smirnov, Phys. Usp. 48, 83 (2005).

    Article  ADS  Google Scholar 

  7. R. S. Gekht, Sov. Phys. JETP 75, 1058 (1992).

    Google Scholar 

  8. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. Solid State 52, 1673 (2010).

    Article  ADS  Google Scholar 

  9. R. S. Gekht and I. N. Bondarenko, J. Exp. Theor. Phys. 86, 1209 (1998).

    Article  ADS  Google Scholar 

  10. R. S. Gekht and I. N. Bondarenko, J. Exp. Theor. Phys. 84, 345 (1997).

    Article  ADS  Google Scholar 

  11. J. M. Hughes, J. W. Drexler, C. F. Campana, and M. L. Malinconico, Am. Mineralog. 73, 181 (1988).

  12. A. A. Belik, Mater. Res. Bull. 34, 1973 (1999).

    Article  Google Scholar 

  13. T. V. Drokina, G. A. Petrakovskii, A. L. Freidman, M. S. Molokeev, and E. G. Rezina, RF Patent No. 2592867 (2016).

  14. S. Kamoun, F. Hlel, and M. Gargouri, Ionics 20, 1103 (2014).

    Article  Google Scholar 

  15. S. Kamoun and M. Gargouri, Ionics 21, 765 (2014).

    Article  Google Scholar 

  16. D. A. Velikanov, Vestn. SibGAU 2, 176 (2013).

    Google Scholar 

  17. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual (Bruker AXS, Karlsruhe, Germany, 2008).

  18. N. S. Akhmetov, General and Inorganic Chemistry (Vysshaya Shkola, Akademiya, Moscow, 2001).

  19. J. A. Mydosh, Spin-Glasses: An Experimental Introduction (Taylor and Francis, New York, 1993).

    Google Scholar 

  20. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Russ. Chem. Rev. 74, 489 (2005).

    Article  ADS  Google Scholar 

  21. N. V. Mushnikov, Magnetism and Magnetic Transitions (UrFU, Yekaterinburg, 2017) [in Russian].

  22. E. A. Mikhaleva, I. N. Flerov, V. S. Bondarev, M. V. Gorev, A. D. Vasil’ev, and T. N. Davydova, Phys. Solid State 53, 510 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the authorities of the Oak Ridge National Laboratory (USA) for presenting the opportunity of conducting neutron diffraction experiments and Matthias D. Frontzek for performing the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Drokina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drokina, T.V., Petrakovskii, G.A., Bayukov, O.A. et al. Physical Properties of a Frustrated Quasi-One-Dimensional NaCuFe2(VO4)3 Magnet and Effect of Chemical Pressure Induced by the Substitution of Sodium for Lithium. Phys. Solid State 62, 297–307 (2020). https://doi.org/10.1134/S1063783420020122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420020122

Keywords:

Navigation