Skip to main content
Log in

Possibilities of Characterizing the Crystal Parameters of CdxHg1 – xTe Structures on GaAs Substrates by the Method of Generation of the Probe-Radiation Second Harmonic in Reflection Geometry

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Results of numerical simulation and experimental data on recording azimuthal angular dependences of a second-harmonic signal reflected from CdxHg1 – xTe structures and GaAs substrates at normal incidence of probe laser radiation on the sample and azimuthal rotation of its polarization plane have been compared. It is found proceeding from the results of studying (013)GaAs substrates and CdTe|ZnTe|GaAs buffer layers that deviations from the (013) surface orientation were 1°–3° (in crystallophysical angles Θ and φ) for GaAs substrates and up to 8° for CdTe|ZnTe|GaAs buffer layers; the magnitude of the second-harmonic signal from the buffer layers can be assumed inversely proportional to the FWHM of X-ray rocking curves. It is shown based on the experimental data that components of the nonlinear susceptibility tensor χxyz(ω) of the CdxHg1 – xTe crystal structure are much larger than those for CdTe and GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. A. Akhmatov, V. I. Emel’yanov, N. I. Koroteev, and V. V. Seminogov, Sov. Phys. Usp. 28, 1084 (1985).

    Article  ADS  Google Scholar 

  2. T. F. Heinz, in Nonlinear Surface Electromagnetic Phenomena, Ed. by H. Ponth and G. Stegeman (North Holland, Amsterdam, 1991), p. 353.

    Google Scholar 

  3. V. F. Krasnov, V. I. Prots’, A. M. Rubenchik, S. G. Struts, and M. F. Stupak, Sov. J. Quantum Electron. 20, 532 (1990).

    Article  ADS  Google Scholar 

  4. K. A. Brekhov, K. A. Grishunin, D. V. Afanas’ev, S. V. Semin, N. E. Sherstyuk, E. D. Mishina, and A. V. Kimel, Phys. Solid State 60, 31 (2018).

    Article  ADS  Google Scholar 

  5. V. V. Balanyuk, V. F. Krasnov, S. L. Musher, V. I. Prots, V. E. Ryabchenko, S. A. Stoyanov, S. G. Struts, M. F. Stupak, and V. S. Syskin, Quantum Electron. 25, 183 (1995).

    Article  ADS  Google Scholar 

  6. V. V. Balaniuk, S. L. Musher, A. M. Rubenchik, V. E. Ryabchenko, M. F. Stupak, S. A. Dvoretskii, V. I. Liberman, A. A. Fedorov, and V. S. Syskin, Mater. Sci. Eng. B 44, 168 (1997).

    Article  Google Scholar 

  7. Yu. G. Sidorov, M. V. Yakushev, and A. V. Kolesnikov, Optoelectron., Instrum. Data Process. 50, 234 (2014).

    Article  Google Scholar 

  8. Yu. G. Sidorov, M. V. Yakushev, V. S. Varavin, A. V. Ko-lesnikov, E. M. Trukhanov, I. V. Sabinina, and I. D. Loshkarev, Phys. Solid State 57, 2151 (2015).

    Article  ADS  Google Scholar 

  9. I. D. Burlakov, A. V. Demin, G. G. Levin, N. A. Piskunov, S. V. Zabotnov, and A. S. Kashuba, Izmerit. Tekh., No. 6, 15 (2010).

  10. E. V. Permikina and A. S. Kashuba, Usp. Prikl. Fiz. 4, 493 (2016).

    Google Scholar 

  11. M. F. Stupak, N. N. Mikhailov, S. A. Dvoretskii, and M. V. Yakushev, Optoelectron., Instrum. Data Process. 55 (5) (2019, in press).

  12. Yu. G. Sidorov, S. A. Dvoretsky, N. N. Mikhailov, M. V. Yakushev, V. S. Varavin, V. V. Vasiliev, A. O. Suslyakov, and V. N. Ovsyuk, Proc. SPIE 4355, 228 (2001).

    Article  ADS  Google Scholar 

  13. V. S. Varavin, V. V. Vasiliev, S. A. Dvoretsky, N. N. Mikhailov, V. N. Ovsyuk, Yu. G. Sidorov, A. O. Suslyakov, M. V. Yakushev, and A. L. Aseev, Opto-Electron. Rev. 11, 99 (2003).

    Google Scholar 

  14. Yu. G. Sidorov, S. A. Dvoretski, V. S. Varavin, N. N. Mikhailov, M. V. Yakushev, and I. V. Sabinina, Semiconductors 35, 1045 (2001).

    Article  ADS  Google Scholar 

  15. S. A. Dvoretsky, N. N. Mikhailov, D. G. Ikusov, V. A. Kartashev, A. V. Kolesnikov, I. V. Sabinina, Yu. G. Sidorov, and V. A. Shvets, in Cadmium Telluride (CdTe)—Prospects, Challenges and Application (InTech Open, Rijeka, 2019). https://doi.org/ 105772/intechopen.85563

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, project no. 18-29-20053, Basic Research Program of the Russian Academy of Sciences, and Program of Development of the Organization and performed within government contract of the Ministry of Science and Higher Education of the Russian Federation, project no. AAAA-A17-117121270018-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Stupak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stupak, M.F., Mikhailov, N.N., Dvoretskii, S.A. et al. Possibilities of Characterizing the Crystal Parameters of CdxHg1 – xTe Structures on GaAs Substrates by the Method of Generation of the Probe-Radiation Second Harmonic in Reflection Geometry. Phys. Solid State 62, 252–259 (2020). https://doi.org/10.1134/S1063783420020201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420020201

Keywords:

Navigation