Skip to main content
Log in

Formation of the Shock Pressure Regime in the Form of a Traveling Wave in Nematic Twisted Cells

  • LIQUID CRYSTALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The paper presents a numerical study, within a nonlinear generalization of the classical Ericksen–Leslie theory, of a new nonlinear mechanism for the formation of the regime of shock pressure on the boun-ding walls of a microsized twisted nematic cell (TNC), realized in the form of the kinklike traveling wave \(\mathcal{P}\)(z\({v}t\)) under the effect of the externally applied electric field and induced by a strong local distribance of the director field in the form of a Gaussian (normal) distribution. The mechanisms responsible for the formation of the traveling wave of shock pressure propagating in the TNC from one of its boundaries to another are studied, and it is shown how the magnitude of the electric field and the shape of the localized initial perturbation of the director field affect the similarity of the traveling wave to the kinklike wave. Studies of the dynamic relaxation of the director field in TNCs also showed that, at temperatures exceeding the temperature for the nematic–smectic A (NA) TNA phase transition by several dozen mK, fluctuations in the order parameter of the emerging smectic phase suppress the effect of the electric field and favor the singular behavior of the azimuthal anchoring energy density as TTNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, New York, 2006).

    Book  Google Scholar 

  2. A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, Appl. Phys. Lett. 94, 181910 (2009).

    Article  ADS  Google Scholar 

  3. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

    Google Scholar 

  4. A. P. H. J. Schenning, G. P. Crawford, and D. J. Broer, Liquid Crystal Sensors (CRC, Taylor and Francis Group, Boca Raton, 2018).

    Google Scholar 

  5. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Univ. Press, Oxford, 1995).

    Book  Google Scholar 

  6. A. V. Zakharov and A. A. Vakulenko, Phys. Rev. E 72, 021712 (2005).

    Article  ADS  Google Scholar 

  7. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor and Francis, London, 2004).

    Google Scholar 

  8. J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960).

    Article  Google Scholar 

  9. F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).

    Article  Google Scholar 

  10. W. van Saarloos, Phys. Rev. A 37, 211 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Byull. Mosk. Univ., Ser. A: Mat. Mekh. 1, 1 (1937).

    Google Scholar 

  12. A. Rapini and M. Papoular, J. Phys. Colloq. (France) 30, C4-541 (1969).

    Google Scholar 

  13. I. S. Berezin and N. R. Zhidkov, Methods of Calculations (Fizmatgiz, Moscow, 1964).

    Google Scholar 

  14. M. Vilfan and M. Copic, Phys. Rev. E 68, 031704 (2003).

    Article  ADS  Google Scholar 

  15. A. Sugimura, K. Matsumoto, O. Y. Zhong-Can, and M. Iwamoto, Phys. Rev. E 54, 5217 (1996).

    Article  ADS  Google Scholar 

  16. J. Thoen, H. Marynissen, and W. van Dael, Phys. Rev. Lett. 57, 94 (1984).

    Google Scholar 

  17. D. Davidov, C. R. Safynia, M. Kaplan, S. S. Dana, R. Schaetzing, R. J. Birgeneau, and J. D. Lister, Phys. Rev. B 19, 1657 (1979).

    Article  ADS  Google Scholar 

  18. D. Kamada, K. Okimoto, A. Sugimura, G. R. Luckhurst, B. A. Timimi, and H. Zimmermann, Mol. Cryst. Liq. Cryst. 441, 129 (2005).

    Article  Google Scholar 

  19. J. G. Fonseca and Y. Galerne, Phys. Rev. E 61, 1550 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (grants nos. 3.11888.2018/11.12 and 3.9585.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.V., Pasechnik, S.V. Formation of the Shock Pressure Regime in the Form of a Traveling Wave in Nematic Twisted Cells. Phys. Solid State 62, 359–367 (2020). https://doi.org/10.1134/S1063783420020213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420020213

Keywords:

Navigation