Skip to main content
Log in

Factors Affecting the Labeling of NIH 3T3 Cells with Magnetic Nanoparticles

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The factors that affect the labeling of NIH 3T3 murine fibroblasts with Fe3O4-based magnetic nanoparticles (MNPs) were studied using MNPs produced by the gas condensation and solution precipitation methods and MNPs surface-modified with 3-aminopropylsilane or L-lysine. The production method, surface modifications, the particle concentration and size, the state of the cell population, and the method of MNP introduction were found to substantially affect the efficiency of MNP binding by cells. In particular, large MNP clusters may occur in MNP suspensions in DMSO, and their disruption by sonication increased the percent yield of magnetically labeled cells. Static incubation of a cell suspension led to a more efficient labeling as compared with continuous agitation. Cells attached to a plastic support could be labeled to a higher degree than cells in suspension, but required substantially longer incubations with MNPs. MNP centrifugation on cell layers (magnetic spinoculation) significantly increased the rate and efficiency of labeling. The stability of magnetic labeling was shown to depend on the MNP dose during labeling. Electron microscopy studies demonstrated that MNPs were associated with the cell surface after 20-min incubation with cells and were mostly in the cell interior after 4-h incubation. The results of the study may be useful for preparation and application of magnetized cell samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Gubin S.P., Koksharov Yu.A., Khomutov G.B., Yurkov G.Yu. 2005. Magnetic nanoparticles: Methods of production, structure, and properties. Usp. Khim. 74, 539‒574.

    Article  CAS  Google Scholar 

  2. Gupta A.K., Gupta M. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials.26, 3995–4021.

    Article  CAS  PubMed  Google Scholar 

  3. Kudr J., Haddad Y., Richtera L., Heger Z., Cernak M., Adam V., Zitka O. 2017. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials (Basel). 7, E243.

    Article  PubMed  CAS  Google Scholar 

  4. Miltenyi S., Müller W., Weichel W., Radbruch A. 1990. High gradient magnetic cell separation with MACS. Cytometry. 11, 231‒238.

    Article  CAS  PubMed  Google Scholar 

  5. Lewin M., Carlesso N., Tung C.H., Tang X.W., Cory D., Scadden D.T., Weissleder R. 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410‒414.

    Article  CAS  PubMed  Google Scholar 

  6. Sun C., Lee J.S., Zhang M. 2008. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252‒1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weissleder R., Kelly K., Sun E.Y., Shtatland T., Josephson L. 2005. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418‒1423.

    Article  CAS  PubMed  Google Scholar 

  8. Merkle E.M., Boll D.T., Boaz T., Duerk J.L., Chung Y.C., Jacobs G.H., Varnes M.E., Lewin J.S. 1999. MRI-guided radiofrequency thermal ablation of implanted VX2 liver tumors in a rabbit model: demonstration of feasibility at 0.2 T. Magn. Reson. Med. 42, 141‒149.

    Article  CAS  PubMed  Google Scholar 

  9. Hilger I., Hiergeist R., Hergt R., Winnefeld K., Schubert H., Kaiser W.A. 2002. Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study. Invest. Radiol. 37, 580‒586.

    Article  CAS  PubMed  Google Scholar 

  10. Bertram J. 2006. MATra ‒ Magnet Assisted Transfection: Combining nanotechnology and magnetic forces to improve intracellular delivery of nucleic acids. Curr. Pharm. Biotechnol. 7, 277‒285.

    Article  CAS  PubMed  Google Scholar 

  11. Jia J.M., Chowdary P.D., Gao X., Ci B., Li W., Mulgaonkar A., Plautz E.J., Hassan G., Kumar A., Stowe A.M., Yang S.H., Zhou W., Sun X., Cui B., Ge W.P. 2017. Control of cerebral ischemia with magnetic nanoparticles. Nat. Methods. 14, 160‒166.

    Article  CAS  PubMed  Google Scholar 

  12. Ito A., Hayashida M., Honda H., Hata K., Kagami H., Ueda M., Kobayashi T. 2004. Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng. 10, 873‒880.

    Article  CAS  PubMed  Google Scholar 

  13. Ito A., Jitsunobu H., Kawabe Y., Kamihira M. 2007. Construction of heterotypic cell sheets by magnetic force-based 3-D coculture of HepG2 and NIH3T3 cells. J. Biosci. Bioeng. 104, 371‒378.

    Article  CAS  PubMed  Google Scholar 

  14. Daquinag A.C., Souza G.R., Kolonin M.G. 2013. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng. C: Methods. 19, 336‒344

    Article  CAS  Google Scholar 

  15. Ito A., Jitsunobu H., Kawabe Y., Ijima H., Kamihira M. 2009. Magnetic separation of cells in coculture systems using magnetite cationic liposomes. Tissue Eng. C: Methods. 15, 413‒423.

    Article  CAS  Google Scholar 

  16. Savvateeva M.V., Demin A.M., Krasnov V.P., Belyavsky A.V. 2016. Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells. Anal. Biochem. 509, 146‒155.

    Article  CAS  PubMed  Google Scholar 

  17. Demin A.M., Krasnov V.P., Charushin V.N. 2013. Covalent surface modification of Fe3O4 magnetic nanoparticles with alkoxysilanes and amino acids. Mendeleev Commun.23, 14–16.

    Article  CAS  Google Scholar 

  18. Demin A.M., Uimin M.A., Shchegoleva N.N., Ermakov A.E., Krasnov V.P. 2012. Surface modification of Fe3O4 nanoparticles by S-naproxen. Ross. Nanotekhnol.7, 66‒70.

    Google Scholar 

  19. Demin A.M., Pershina A.G., Ivanov V.V., Nevskaya K.V., Shevelev O.B., Minin A.S., Byzov I.V., Sazonov A.E., Krasnov V.P., Ogorodova L.M. 2016. 3-Aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by Opisthorchis felineus.Int. J. Nanomed.11, 4451–4463.

    Article  CAS  Google Scholar 

  20. Demin A.M., Pershina A.G., Nevskaya K.V., Efimova L.V., Shchegoleva N.N., Uimin M.A., Kuznetsov D.K., Shur V.Ya., Krasnov V.P., Ogorodova L.M. 2016. pHLIP-modified magnetic nanoparticles for targeting acidic diseased tissue. RCS Adv. 6, 60196–60199.

    CAS  Google Scholar 

  21. Reynolds E.S. 1963. The use of lead citrate at high pH as electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208‒212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Demin A.M., Vigorov A.Y., Nizova I.A., Uimin M.A., Shchegoleva N.N., Ermakov A.E., Krasnov V.P., Charushin V.N. 2014. Functionalization of Fe3O4 magnetic nanoparticles with RGD peptide derivatives. Mendeleev Commun.24, 20‒22.

    Article  CAS  Google Scholar 

  23. Qiu B., Yang X. 2008. Molecular MRI of hematopoietic stem-progenitor cells: Monitoring of gene therapy and atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med.5, 396–404.

    Article  CAS  PubMed  Google Scholar 

  24. Ocampo S.M., Rodriguez V., de la Cueva L., Salas G., Carrascosa J.L., Rodríguez M.J., García-Romero N., Cuñado J.L., Camarero J., Miranda R., Belda-Iniesta C., Ayuso-Sacido A. 2015. g-force induced giant efficiency of nanoparticles internalization into living cells. Sci. Rep. 5, 15160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Demin A.M., Koryakova O.V., Krasnov V.P. 2014. Quantitative determination of 3-aminopropylsilane on the surface of Fe3O4 magnetic nanoparticles by FTIR spectroscopy. Zh. Prikl. Spektrosk.81, 510–514.

    Google Scholar 

  26. Frank J.A., Anderson S.A., Kalsih H., Jordan E.K., Lewis B.K., Yocum G.T., Arbab A.S. 2004. Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy. 6, 621‒625.

    Article  CAS  PubMed  Google Scholar 

  27. Arbab A.S., Yocum G.T., Kalish H., Jordan E.K., Anderson S.A., Khakoo A.Y., Read E.J., Frank J.A. 2004. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular. MRI Blood. 104, 1217‒1223.

    Article  CAS  PubMed  Google Scholar 

  28. Yang S.Y., Sun J.S., Liu C.H., Tsuang Y.H., Chen L.T., Hong C.Y., Yang H.C., Horng H.E. 2008. Ex vivo magnetofection with magnetic nanoparticles: A novel platform for nonviral tissue engineering. Artif. Organs. 32, 195‒204.

    Article  CAS  PubMed  Google Scholar 

  29. Prijic S., Scancar J., Romih R., Cemazar M., Bregar V.B., Znidarsic A., Sersa G. 2010. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membr. Biol. 236, 167‒179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y.X., Leung K.C., Cheung W.H., Wang H.H., Shi L., Wang D.F., Qin L., Ahuja A.T. 2010. Low-intensity pulsed ultrasound increases cellular uptake of superparamagnetic iron oxide nanomaterial: Results from human osteosarcoma cell line U2OS. J. Magn. Reson. Imaging. 31, 1508‒1513.

    Article  PubMed  Google Scholar 

  31. Wang H., Zhao X., Han X., Tang Z., Song F., Zhang S., Zhu Y., Guo W., He Z., Guo Q., Wu F., Meng X., Giesy J.P. 2018. Colloidal stability of Fe3O4 magnetic nanoparticles differentially impacted by dissolved organic matter and cations in synthetic and naturally-occurred environmental waters. Environ. Pollut. 241, 912‒921.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H., Zhao X., Han X., Tang Z., Liu S., Guo W., Deng C., Guo Q., Wang H., Wu F., Meng X., Giesy J.P. 2017. Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe3O4 magnetic nanoparticles in aqueous solution. Sci. Total. Environ. 586, 817‒826.

    Article  CAS  PubMed  Google Scholar 

  33. Jeon S., Hurley K.R., Bischof J.C., Haynes C.L., Hogan C.J. 2016. Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate. Nanoscale. 8, 16053–16064.

    Article  CAS  PubMed  Google Scholar 

  34. Wilhelm C., Gazeau F., Bacri J.C. 2003. Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells. Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys. 67, 061908.

    Article  CAS  PubMed  Google Scholar 

  35. Kim J.S., Yoon T.J., Yu K.N., Noh M.S., Woo M., Kim B.G., Lee K.H., Sohn B.H., Park S.B., Lee J.K., Cho M.H. 2006. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci. 7, 321‒326.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soenen S.J., De Smedt S.C., Braeckmans K. 2012. Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles. Contrast Media Mol. Imaging.7, 140‒152.

    Article  CAS  PubMed  Google Scholar 

  37. Fortes Brollo M.E., Hernández Flores P., Gutiérrez L., Johansson C., Barber D.F., Morales M.D.P. 2018. Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells. Phys. Chem. Chem. Phys. 20, 17829‒17838.

    Article  CAS  PubMed  Google Scholar 

  38. Jasmin, Torres A.L., Nunes H.M., Passipieri J.A., Jelicks L.A., Gasparetto E.L., Spray D.C., Campos de Carvalho A.C., Mendez-Otero R. 2011. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. J. Nanobiotechnol. 9, 4.

    Article  CAS  Google Scholar 

  39. Cmiel V., Skopalik J., Polakova K., Solar J., Havrdova M., Milde D., Justan I., Magro M., Starcuk Z., Provaznik I. 2017. Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells. Eur. Biophys. J.46, 433‒444.

    Article  CAS  PubMed  Google Scholar 

  40. Gu J., Xu H., Han Y., Dai W., Hao W., Wang C., Gu N., Xu H., Cao J. 2011. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Sci. China Life Sci. 54, 793‒805.

    Article  CAS  PubMed  Google Scholar 

  41. Mazuel F., Espinosa A., Luciani N., Reffay M., Le Borgne R., Motte L., Desboeufs K., Michel A., Pellegrino T., Lalatonne Y., Wilhelm C. 2016. Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano. 10, 7627‒7638.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Experiments illustrated with Figs. 1‒10 were supported by the Russian Science Foundation (project no. 18-14-00300). Synthesis and physicochemical characterization of MNPs used in this work (Figs. S1‒S3) were supported by a state contract (project no. AAAA-A18-118020290116-5s) and were carried out at the Collective Access Center for Spectroscopy and Analysis of Organic Compounds (SAOS Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyavsky.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Conflict of interests. The authors declare that they have no conflict of interest.

Additional information

Translated by T. Tkacheva

Abbreviations: DMSO, dimethyl sulfoxide; DMF, dimethylformamide; IR, infrared; MNP, magnetic nanoparticle; TGA, thermal gravimetric analysis; US, ultrasound; PBS, phosphate-buffered saline; APS, 3-aminopropylsilane; APTMS, (3-aminopropyl)trimethoxysilane; TBTU, O-(1H-benzotriazole-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate; DIPEA, N,N-diisopropylethylamine.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandarakov, O.F., Demin, A.M., Popenko, V.I. et al. Factors Affecting the Labeling of NIH 3T3 Cells with Magnetic Nanoparticles. Mol Biol 54, 99–110 (2020). https://doi.org/10.1134/S0026893320010070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010070

Keywords:

Navigation