Skip to main content
Log in

Biotechnological Potential of the Bacillus subtilis 20 Strain

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Bacillus subtilis bacteria play an important role in veterinary medicine, medicine, and biotechnology, and the permanently growing demand for biotechnological products fuels the improvement of the properties of biotechnological strains. B. subtilis strains with improved characteristics may be obtained by rational design and the directed evolution technologies, or be found among newly described strains. In the course of the long-term microbiome composition studies in the Russian segment of the International Space Station, the B. subtilis 20 strain was isolated, this strain shows the capacity for rapid growth and considerable biomass accumulation, as well as increased resistance to acidification of the environment in comparison to the “terrestrial” B. subtilis 168 strain. What is more, B. subtilis 20 is hyperresistant to the DNA and protein damaging factors that are linked to the overexpression of the genes controlling DNA repair, hydrogen sulfide production, and reactive oxygen species neutralization. The described properties of B. subtilis 20 are indicative of its considerable potential as a promising producer of biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. van Dijl J.M., Hecker M. 2013. Bacillus subtilis: From soil bacterium to super-secreting cell factory. Microb. Cell Fact.12, 3.

    Article  CAS  Google Scholar 

  2. Liu Y., Li J., Du G., Chen J., Liu L. 2017. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnol. Adv. 35, 20‒30.

    Article  CAS  Google Scholar 

  3. Cui W., Han L., Suo F., Liu Z., Zhou L., Zhou Z. 2018. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. W. J. Microbiol. Biotechnol. 34, 145.

    Article  Google Scholar 

  4. Gu Y., Xu X., Wu Y., Niu T., Liu Y., Li J., Du G., Liu L. 2018. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engin.50, 109‒121.

    Article  CAS  Google Scholar 

  5. Verma J.P., Jaiswal D.K., Krishna R., Prakash S., Yadav J., Singh V. 2018. characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh region of India. Front. Microbiol. 9, 1293.

    Article  Google Scholar 

  6. Malhotra R., Noorwez S.M., Satyanarayana T. 2000. Production and partial characterization of thermostable and calcium-independent alpha-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31, 378‒384.

    Article  CAS  Google Scholar 

  7. Horneck G., Klaus D.M., Mancinelli R.L. 2010. Space microbiology. Microbiol. Mol. Biol. Rev.74, 121‒156.

    Article  CAS  Google Scholar 

  8. Novikova N.D., Polikarpov N.A., Poddubko S.V., Deshevaya E.A. 2001. Proc. 31st Int. Conf. Environ. Systems, Orlando, FL, USA, 2001, #2001-2001-2310.

  9. Rettberg P., Antunes A., Brucato J., Cabezas P., Collins G., Haddaji A., Kminek G., Leuko S., McKenna-Lawlor S., Moissl-Eichinger C., Fellous J.L., Olsson-Francis K., Pearce D., Rabbow E., Royle S., et al. 2019. Biological contamination prevention for outer solar system moons of astrobiological interest: What do we need to know? Astrobiology. 19, 951‒974.

    Article  Google Scholar 

  10. Venkateswaran K., Satomi M., Chung S., Kern R., Koukol R., Basic C., White D. 2001. Molecular microbial diversity of a spacecraft assembly facility. Syst. Appl. Microbiol. 24, 311‒320.

    Article  CAS  Google Scholar 

  11. Pierson, D.L., McGinnis, M.P., Viktorov A.N. 1994. Microbiological contamination. In Space Biology and Medicine, vol. 2: Life Support and Habitability. Eds. Silzman F.M., Genin A.M. Washington, DC: Americal Institute of Aeronautics and Astronautics, pp. 77–93.

  12. Novikova N.D., Pieron D.L., Poddubko S.V., Deshevaya E.A., Ott S.M., Kastro V.A., Bruce R.D. 2009. Microbiology of the International Space Station. In U.S. and Russian Cooperation in Space Biology and Medicine,vol. 5. Eds. C.F. Sawin, S.I. Hanson, N.G. House, E.D Pestov. Restov, VA: American Institute of Aeronautics and Astronautics, pp. 263–278.

    Google Scholar 

  13. Lang J.M., Coil D.A., Neches R.Y., Brown W.E., Cavalier D., Severance M., Hampton-Marcell J.T., Gilbert J.A., Eisen J.A. 2017. A microbial survey of the International Space Station (ISS). Peer J.5, e4029.

    Article  Google Scholar 

  14. Ichijo T., Yamaguchi N., Tanigaki F., Shirakawa M., Nasu M. 2016. Four-year bacterial monitoring in the International Space Station–Japanese experiment module “Kibo” with culture-independent approach. NPJ Microgravity. 2, 16007.

    Article  Google Scholar 

  15. Baranov V.M., Novikova N.D., Polikarpov N.A., Sychev V.N., Levinskikh M.A., Alekseev V.R., Okuda T., Sugimoto M., Gusev O.A., Grigor’ev A.I. 2009. The Biorisk experiment: 13-month exposure of resting forms of organism on the outer side of the russian segment of the International Space Station: Preliminary results. Dokl. Biol. Sci.426, 267‒270.

    Article  CAS  Google Scholar 

  16. Xu D., Cote J.-C. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 39 end 16S rDNA and 5' end 16S–23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53, 695–704.

    Article  CAS  Google Scholar 

  17. Velho R.V., Caldas D.G., Medina L.F., Tsai S.M., Brandelli A. 2011. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett. Appl. Microbiol. 52, 660‒666.

    Article  CAS  Google Scholar 

  18. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res.31, 3406‒3415.

    Article  CAS  Google Scholar 

  19. McWilliam H., Li W., Uludag M., Squizzato S., Park Y.M., Buso N., Cowley A.P., Lopez R. 2013. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res.41, W597‒600.

    Article  Google Scholar 

  20. Arima Y., Nishigori C., Takeuchi T., Oka S., Morimoto K., Utani A., Miyachi Y. 2006. 4-Nitroquinoline 1-oxide forms 8-hydroxydeoxyguanosine in human fibroblasts through reactive oxygen species. Toxicol. Sci.91, 382‒392.

    Article  CAS  Google Scholar 

  21. Engelmann S., Hecker M. 1996. Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE.FEMS Microbiol. Lett. 145, 63‒69.

    Article  CAS  Google Scholar 

  22. Inaoka T., Matsumura Y., Tsuchido T. 1999. SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis.J. Bacteriol. 181, 1939‒1943.

    Article  CAS  Google Scholar 

  23. Nagy P., Winterbourn C.C. 2010. Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem. Res.Ttoxicol. 23, 1541‒1543.

    Article  CAS  Google Scholar 

  24. Vlasov S.A., Krasnopevtseva N.V., Krasheninnikova T.I., Lukashina T.I. 1999. Arthrobacter sp. strain for decomposition of crude oil and petroleum products. RU 2142997 C1. Nauchno-tekh. ob”ed. ITIN Inzhenernoi Akademii RF.

  25. Vlasov S.A., Krasnopevtseva N.V., Krasheninnikova T.I., Lukashina T.I., Ukraintsev A.D. 1999. Arthrobacter sp. strain for decomposition of crude oil and petroleum products. RU 2142996 C1. Nauchno-tekh. ob”ed. ITIN Inzhenernoi Akademii RF.

  26. Klaus D., Simske S., Todd P., Stodieck L. 1997. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology. 143(Pt 2), 449‒455.

    Article  CAS  Google Scholar 

  27. Kacena M.A., Merrell G.A., Manfredi B., Smith E.E., Klaus D.M., Todd P. 1999. Bacterial growth in space flight: Logistic growth curve parameters for Escherichia coli and Bacillus subtilis.Appl. Microbiol. Biotechnol. 51, 229‒234.

    Article  CAS  Google Scholar 

  28. Lapchine L., Moatti N., Gasset G., Richoilley G., Templier J., Tixador R. 1986. Antibiotic activity in space. Drugs Exp. Clin. Res. 12, 933‒938.

    CAS  PubMed  Google Scholar 

  29. Juergensmeyer M.A., Juergensmeyer E.A., Guikema J.A. 1999. Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Sci. Technol. 12, 41‒47.

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 17-74-30030) (Table 1 and Figs. 2, 3, 5, and 6), the Fundamental Research Program for the State Academies of Sciences (grant no. АААА-А19-119010590015-8) (Fig. 4), and the Russian Academy of Sciences Programs nos. 01201367566 (Fig. 1) and 01201373016 (Table 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Karpov.

Ethics declarations

The article does not contain any studies involving animals or humans performed by any of the authors.

Conflict of interest. The authors declare no conflict of interest.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, D.S., Domashin, A.I., Kotlov, M.I. et al. Biotechnological Potential of the Bacillus subtilis 20 Strain. Mol Biol 54, 119–127 (2020). https://doi.org/10.1134/S0026893320010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010082

Keywords:

Navigation