Skip to main content
Log in

The Influence of the Minor Short Isoform of Securin (PTTG1) on Transcription is Significantly Different from the Impact of the Full Isoform

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

PTTG1 (vertebrate securin) is a separation inhibitor and regulates DNA repair and transcription. The protein is predominantly expressed in the second half of the S phase and at the G2 stage. With the onset of anaphase, securin is ubiquitinated by the APC/C complex and degraded rapidly. Increased expression of PTTG1 is associated with enhanced tumor cell growth and metastasis. Recently, we found a short securin isoform lacking the main APC/C recognition site (D-box) and the DNA-binding domain encoded by exons 3 and 4. The mRNA level of the short isoform in unsynchronized cells is 0.4–2% of the full-length one. We reported earlier on the ability of the short PTTG1 isoform to activate some of the genes controlled by the full-length protein. In this work, groups of genes, whose expression is altered by the action of the short and complete securin isoforms, were determined using RNA sequencing. Groups of genes whose mRNA levels are regulated by both protein isoforms and only one of the isoforms were identified. For a more detailed study of the effect of securin isoforms on the transcriptional program of cells, the NFYB gene, encoding the NF-Y transcription regulator subunit, was chosen. Our data showed that with overexpression of the short isoform, the level of NFYB mRNA decreased 2.4 ± 0.7 times, while the complete isoform did not significantly affect the expression of NFYB. 2.2-fold suppression of the short isoform of securin led to an increase in the expression of NFYB mRNA by 2.7 ± 0.3 times. Moreover, the mRNA expression of full-length securin increased by 2.7 ± 0.4 times. Since NFYB is associated with the PTTG1 promoter region, we suggest that the short isoform may be involved in regulation of the expression of the main isoform of securin by changing the level of this transcription factor. Since NFYB and PTTG1 are involved in the development of tumors and the formation of drug resistance, we assume that the short isoform of securin may play an important role in these processes. Thus, we showed the functional significance of the minor short isoform of securin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kalsotra A., Cooper T.A. 2011. Functional consequences of developmentally regulated alternative splicing. Nat. Rev. Genet.12, 715‒729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim E., Magen A., Ast G. 2007. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res.35, 125‒131.

    Article  CAS  PubMed  Google Scholar 

  3. Calarco J.A., Xing Y., Caceres M., Calarco J.P., Xiao X., Pan Q., Lee C., Preuss T.M., Blencowe B.J. 2007. Global analysis of alternative splicing differences between humans and chimpanzees. Gene Dev.21, 2963–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Melamud E., Moult J. 2009. Stochastic noise in splicing machinery. Nucleic Acids Res.37, 4873‒4886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou H., McGarry T.J., Bernal T., Kirschner M.W. 1999. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science.285, 418‒422.

    Article  CAS  PubMed  Google Scholar 

  6. Roy Choudhury D., Small C., Wang Y., Mueller P.R., Rebel V.I., Griswold M.D., McCarrey J.R. 2010. Microarray-based analysis of cell-cycle gene expression during spermatogenesis in the mouse. Biol. Reproduction.83, 663‒675.

    Article  CAS  Google Scholar 

  7. Romero F., Multon M.C., Ramos-Morales F., Dominguez A., Bernal J.A., Pintor-Toro J.A., Tortolero M. 2001. Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res.29, 1300‒1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hatcher R.J., Dong J., Liu S., Bian G., Contreras A., Wang T., Hilsenbeck S.G., Li Y., Zhang P. 2014. Pttg1/securin is required for the branching morphogenesis of the mammary gland and suppresses mammary tumorigenesis. Proc. Natl. Acad. Sci. U. S. A.111, 1008‒1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernal J.A., Luna R., Espina A., Lazaro I., Ramos-Morales F., Romero F., Arias C., Silva A., Tortolero M., Pintor-Toro J.A. 2002. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat. Genet.32, 306‒311.

    Article  CAS  PubMed  Google Scholar 

  10. Cho-Rok J., Yoo J., Jang Y.J., Kim S., Chu I.S., Yeom Y.I., Choi J.Y., Im D.S. 2006. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo.Hepatology.43, 1042‒1052.

    Article  CAS  PubMed  Google Scholar 

  11. Ishitsuka Y., Kawachi Y., Taguchi S., Maruyama H., Fujisawa Y., Furuta J., Nakamura Y., Otsuka F. 2012. Pituitary tumor-transforming gene 1 enhances proliferation and suppresses early differentiation of keratinocytes. J. Investigat. Dermatol.132, 1775‒1784.

    Article  CAS  Google Scholar 

  12. Li W.H., Chang L., Xia Y.X., Wang L., Liu Y.Y., Wang Y.H., Jiang Z., Xiao J., Wang Z.R. 2015. Knockdown of PTTG1 inhibits the growth and invasion of lung adenocarcinoma cells through regulation of TGFB1/ SMAD3 signaling. Int. J. Immunopathol. Pharmacol.28, 45‒52.

    Article  CAS  PubMed  Google Scholar 

  13. Waizenegger I., Gimenez-Abian J.F., Wernic D., Peters J.M. 2002. Regulation of human separase by securin binding and autocleavage. Curr. Biol.: CB.12, 1368‒1378.

    Article  CAS  PubMed  Google Scholar 

  14. Ly T., Ahmad Y., Shlien A., Soroka D., Mills A., Emanuele M.J., Stratton M.R., Lamond A.I. 2014. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. eLife.3, e01630.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fang G., Yu H., Kirschner M.W. 1998. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell.2, 163‒171.

    Article  CAS  PubMed  Google Scholar 

  16. Tong Y., Tan Y., Zhou C., Melmed S. 2007. Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition. Oncogene.26, 5596‒5605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wondergem B., Zhang Z., Huang D., Ong C.K., Koeman J., Hof D.V., Petillo D., Ooi A., Anema J., Lane B., Kahnoski R.J., Furge K.A., Teh B.T. 2012. Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma. Cancer Res.72, 4361‒4371.

    Article  CAS  PubMed  Google Scholar 

  18. Huang J.L., Cao S.W., Ou Q.S., Yang B., Zheng S.H., Tang J., Chen J., Hu Y.W., Zheng L., Wang Q. 2018. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma. Mol. Cancer.17, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo X.C., Li L., Gao Z.H., Zhou H.W., Li J., Wang Q.Q. 2019. The long non-coding RNA PTTG3P promotes growth and metastasis of cervical cancer through PTTG1. Aging.11, 1333‒1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiang W., Wu X., Huang C., Wang M., Zhao X., Luo G., Li Y., Jiang G., Xiao X., Zeng F. 2017. PTTG1 regulated by miR-146a-3p promotes bladder cancer migration, invasion, metastasis and growth. Oncotarget.8, 664‒678.

    PubMed  Google Scholar 

  21. Huang S., Liao Q., Li L., Xin D. 2014. PTTG1 inhibits SMAD3 in prostate cancer cells to promote their proliferation. Tumour Biol.35, 6265‒6270.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng Y., Guo J., Zhou J., Lu J., Chen Q., Zhang C., Qing C., Koeffler H.P., Tong Y. 2015. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med. Genomics.8, 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin Y.H., Tian Y., Wang J.S., Jiang Y.G., Luo Y., Chen Y.T. 2015. Pituitary tumor-transforming gene 1 regulates invasion of prostate cancer cells through MMP13. Tumour Biol.37, 15495–15500.

    Article  CAS  Google Scholar 

  24. Genkai N., Homma J., Sano M., Tanaka R., Yamanaka R. 2006. Increased expression of pituitary tumor-transforming gene (PTTG)-1 is correlated with poor prognosis in glioma patients. Oncol. Repts.15, 1569‒1574.

    CAS  Google Scholar 

  25. Fujii T., Nomoto S., Koshikawa K., Yatabe Y., Teshigawara O., Mori T., Inoue S., Takeda S., Nakao A. 2006. Overexpression of pituitary tumor transforming gene 1 in HCC is associated with angiogenesis and poor prognosis. Hepatology.43, 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  26. Feng Z.Z., Chen J.W., Yang Z.R., Lu G.Z., Cai Z.G. 2012. Expression of PTTG1 and PTEN in endometrial carcinoma: Correlation with tumorigenesis and progression. Med. Oncol.29, 304‒310.

    Article  CAS  PubMed  Google Scholar 

  27. Demeure M.J., Coan K.E., Grant C.S., Komorowski R.A., Stephan E., Sinari S., Mount D., Bussey K.J. 2013. PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery.154, 1405‒1416; discussion 1416.

    Article  PubMed  Google Scholar 

  28. Wei C., Yang X., Xi J., Wu W., Yang Z., Wang W., Tang Z., Ying Q., Zhang Y. 2015. High expression of pituitary tumor-transforming gene-1 predicts poor prognosis in clear cell renal cell carcinoma. Mol. Clin. Oncol.3, 387‒391.

    Article  PubMed  Google Scholar 

  29. Xu M.D., Dong L., Qi P., Weng W.W., Shen X.H., Ni S.J., Huang D., Tan C., Sheng W.Q., Zhou X.Y., Du X. 2016. Pituitary tumor-transforming gene-1 serves as an independent prognostic biomarker for gastric cancer. Gastric Cancer.19, 107‒115.

    Article  CAS  PubMed  Google Scholar 

  30. Demin D.E., Bogolyubova A.V., Zlenko D.V., Uvarova A.N., Deikin A.V., Putlyaeva L.V., Belousov P.V., Mit’kin N.A., Korneev K.V., Sviryaeva E.N., Kulakovskiy I.V., Tatosyan K.A., Kuprash D.V., Schwartz A.M. 2018. The novel short isoform of securin stimulates the expression of cyclin D3 and Angiogenesis Factors VEGFA and FGF2, but does not affect the expression of MYC transcription factor. Mol. Biol. (Moscow). 52, 508‒518.

    Article  CAS  Google Scholar 

  31. Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics.30, 2114‒2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. 2013. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics.29, 15‒21.

    Article  CAS  PubMed  Google Scholar 

  33. Liao Y., Smyth G.K., Shi W. 2014. Feature counts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics.30, 923‒930.

    Article  CAS  PubMed  Google Scholar 

  34. Love M.I., Huber W., Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chu C.P., Hokamp J.A., Cianciolo R.E., Dabney A.R., Brinkmeyer-Langford C., Lees G.E., Nabity M.B. 2017. RNA-seq of serial kidney biopsies obtained during progression of chronic kidney disease from dogs with X-linked hereditary nephropathy. Sci. Repts.7, 16776.

    Article  CAS  Google Scholar 

  36. Tripathi S., Pohl M.O., Zhou Y., Rodriguez-Frandsen A., Wang G., Stein D.A., Moulton H.M., DeJesus P., Che J., Mulder L.C., Yanguez E., Andenmatten D., Pache L., Manicassamy B., Albrecht R.A., et al. 2015. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe.18, 723‒735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thul P.J., Akesson L., Wiking M., Mahdessian D., Geladaki A., Blal H.A., Alm T., Asplund A., Bjork L., Breckels L.M., Backstrom A., Danielsson F., Fagerberg L., Fall J., Gatto L., et al. 2017. A subcellular map of the human proteome. Science. 356.

  38. Li X.Y., Mantovani R., Vanhuijsduijnen R.H., Andre I., Benoist C., Mathis D. 1992. Evolutionary variation of the CCAAT-binding transcription factor Nf-Y. Nucleic Acids Res.20, 1087‒1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benatti P., Chiaramonte M.L., Lorenzo M., Hartley J.A., Hochhauser D., Gnesutta N., Mantovani R., Imbriano C., Dolfini D. 2016. NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget.7, 1633‒1650.

    PubMed  Google Scholar 

  40. Moeinvaziri F., Shahhoseini M. 2015. Epigenetic role of CCAAT box-binding transcription factor NF-Y on ID gene family in human embryonic carcinoma cells. IUBMB Life.67, 880‒887.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang X., Nevins J.R., Shats I., Chi J.T. 2015. E2F1-mediated induction of NFYB attenuates apoptosis via joint regulation of a pro-survival transcriptional program. PloS One.10, e0127951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang Z., Gong C., Yu S., Zhou W., Hassan W., Li H., Wang X., Hu Y., Gu K., Chen X., Hong B., Bao Y., Chen X., Zhang X., Liu H. 2018. NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett.415, 58‒72.

    Article  CAS  PubMed  Google Scholar 

  43. Yevshin I., Sharipov R., Valeev T., Kel A., Kolpakov F. 2017. GTRD: A database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res.45, D61‒D67.

    Article  CAS  PubMed  Google Scholar 

  44. Yevshin I., Sharipov R., Kolmykov S., Kondrakhin Y., Kolpakov F. 2019. GTRD: A database on gene transcription regulation-2019 update. Nucleic Acids Res.47, D100‒D105.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out with financial support from the Russian Foundation for Basic Research under scientific project no. 18-34-00628 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Demin.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study did not use biological materials obtained from humans or animals.

Conflict of Interest. The authors declare they have no conflict of interest.

Additional information

Abbreviations: PTTG1, Pituitary Tumor-Transforming Gene-1; APC/C, Anaphase Promoting Complex/Cyclosome; NFYB, Nuclear Transcription Factor Y Subunit Beta.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demin, D.E., Uvarova, A.N., Klepikova, A.V. et al. The Influence of the Minor Short Isoform of Securin (PTTG1) on Transcription is Significantly Different from the Impact of the Full Isoform. Mol Biol 54, 43–50 (2020). https://doi.org/10.1134/S0026893320010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010045

Keywords:

Navigation