Skip to main content
Log in

Mechanisms of Participation of the Urokinase Receptor in Directed Axonal Growth

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The degradation of the extracellular matrix plays an important role in the processes of morphogenesis, angio- and neurogenesis, wound healing, inflammation, carcinogenesis and others. The urokinase receptor uPAR is an important participant in processes that regulate extracellular proteolysis, cell adhesion to the extracellular matrix, cell migration along the chemokine gradient, proliferation and survival involving growth factor receptors. The presence of the GPI anchor and the absence of transmembrane and cytoplasmic domains in uPAR promote involvement of membrane partners for the realization of uPAR signal effects. In some studies, involvement of the fMLP chemokine receptor FPRL in the regulation of uPAR-dependent directed migration has been shown. Moreover, the migration of neural progenitors and their maturation into neurons during the formation of brain structures are regulated by chemokine receptors. Despite the data on the role of uPAR in the processes of morphogenesis, little is known about the interactions between uPAR and chemokine receptors in guidance processes during nerve growth and regeneration. In the present work, it was shown for the first time that the soluble form of uPAR (suPAR) regulates the trajectory of axon outgrowth, and this effect does not depend on the presence of urokinase. It was also shown that regulation of the directed axon growth is based on the interaction of suPAR with the chemokine receptor FPRL1. These data show new mechanisms for the participation of the urokinase system in the regulation of axon guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Lu P., Takai K., Weaver V.M., Werb Z. 2011. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, 12

    Article  Google Scholar 

  2. Smith H.W., Marshall C.J. 2010. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell. Biol. 11, 23‒36.

    Article  CAS  Google Scholar 

  3. Mahmood N., Mihalcioiu C., Rabbani S.A. 2018. Multifaceted role of the urokinase-type plasminogen activator (upa) and its receptor (upar): diagnostic, prognostic, and therapeutic applications. Front. Oncol. 8, 24.

    Article  Google Scholar 

  4. Eden G., Archinti M., Furlan F., Murphy R., Degryse B. 2011. The urokinase receptor interactome. Curr. Pharm. Des. 17, 1874‒1889.

    Article  CAS  Google Scholar 

  5. Cunningham O., Andolfo A., Santovito M.L., Iuzzolino L., Blasi F., Sidenius N. 2003. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J.22, 5994–6003.

    Article  CAS  Google Scholar 

  6. Rubina K.A., Semina E.V., Balatskaya M.N., Plekhanova O.S., Tkachuk V.A. 2018. Mechanisms of regulation of the directed growth of vessels and nerves by the fibrinolytic system components and GPI-anchored navigation receptors. Neurosci. Behav. Physiol.104, 1001–1026.

    Google Scholar 

  7. Ferraris G.M., Sidenius N. 2013. Urokinase plasminogen activator receptor: A functional integrator of extracellular proteolysis, cell adhesion, and signal transduction. Semin. Thromb. Hemost. 39, 347‒355.

    Article  CAS  Google Scholar 

  8. Gorrasi A., Li Santi A., Amodio G., Alfano D., Remondelli P., Montuori N., Ragno P. 2014. The urokinase receptor takes control of cell migration by recruiting integrins and FPR1 on the cell surface. PLoS One. 9, e86352.

    Article  Google Scholar 

  9. Resnati M., Pallavicini I., Wang J.M., Oppenheim J., Serhan C.N., Romano M., Blasi F. 2002. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc. Natl. Acad. Sci. U. S. A.99, 1359‒1364.

    Article  CAS  Google Scholar 

  10. Wei Y., Lukashev M., Simon D.I., Bodary S.C., Rosenberg S., Doyle M.V., Chapman H.A. 1996. Regulation of integrin function by the urokinase receptor. Science. 273, 1551‒1555.

    Article  CAS  Google Scholar 

  11. Eden G., Archinti M., Arnaudova R., Andreotti G., Motta A., Furlan F., Citro V., Cubellis M.V., Degryse B. 2018. D2A sequence of the urokinase receptor induces cell growth through alphavbeta3 integrin and EGFR. Cell. Mol. Life Sci. 75, 1889‒1907.

    Article  CAS  Google Scholar 

  12. Merino P., Diaz A., Jeanneret V., Wu F., Torre E., Cheng L., Yepes M. 2017. Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system. J. Biol. Chem. 292, 2741‒2753.

    Article  CAS  Google Scholar 

  13. Wu F., Catano M., Echeverry R., Torre E., Haile W. B., An J., Chen C., Cheng L., Nicholson A., Tong F.C., Park J., Yepes M. 2014. Urokinase-type plasminogen activator promotes dendritic spine recovery and improves neurological outcome following ischemic stroke. J. Neurosci. 34, 14219‒14232.

    Article  CAS  Google Scholar 

  14. Lino N., Fiore L., Rapacioli M., Teruel L., Flores V., Scicolone G., Sanchez V. 2014. uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis. Dev. Dynam. 243, 676‒689.

    Article  CAS  Google Scholar 

  15. Semina G.V., Rubina K.A., Stepanova V.V., Tkachuk V.A. 2016. Involvement of urokinase receptor and its ligands in brain development and formation of cognitive functions. Ross. Fiziol. Zh. im. I.M. Sechenova.102, 881–903.

    CAS  PubMed  Google Scholar 

  16. Semina G.V., Rubina K.A., Sysoeva V.Yu., Stepanova V.V. 2016. Three-dimensional model of biomatrix as a method of studying blood vessels and nerve growth in tissue engineering structures. Moscow Univ. Chem. Bull.71 (3), 172‒177.

    Article  Google Scholar 

  17. Semina E., Rubina K., Sysoeva V., Rysenkova K., Klimovich P., Plekhanova O., Tkachuk V. 2016. Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching. Eur. J. Cell. Biol. 95, 295‒310.

    Article  CAS  Google Scholar 

  18. Jo M., Takimoto S., Montel V., Gonias S.L. 2009. The urokinase receptor promotes cancer metastasis independently of urokinase-type plasminogen activator in mice. Am. J. Pathol. 175, 190‒200.

    Article  CAS  Google Scholar 

  19. Blasi F., Carmeliet P. 2002. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell. Biol. 3, 932‒943.

    Article  CAS  Google Scholar 

  20. Jaiswal R.K., Varshney A.K., Yadava P.K. 2018. Diversity and functional evolution of the plasminogen activator system. Biomed. Pharmacother. 98, 886‒898.

    Article  CAS  Google Scholar 

  21. Ho C.F., Ismail N.B., Koh J.K., Gunaseelan S., Low Y.H., Ng Y.K., Chua J.J., Ong W.Y. 2018. Localization of formyl-peptide receptor 2 in the rat central nervous system and its role in axonal and dendritic outgrowth. Neurochem. Res. 43, 1587‒1598.

    Article  CAS  Google Scholar 

  22. Resnati M., Guttinger M., Valcamonica S., Sidenius N., Blasi F., Fazioli F. 1996. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J.15, 1572‒1582.

    Article  CAS  Google Scholar 

  23. Montuori N., Bifulco K., Carriero M.V., La Penna C., Visconte V., Alfano D., Pesapane A., Rossi F.W., Salzano S., Rossi G., Ragno P. 2011. The cross-talk between the urokinase receptor and fMLP receptors regulates the activity of the CXCR4 chemokine receptor. Cell. Mol. Life Sci. 68, 2453‒2467.

    Article  CAS  Google Scholar 

  24. Rivellini C., Dina G., Porrello E., Cerri F., Scarlato M., Domi T., Ungaro D., Del Carro U., Bolino A., Quattrini A., Comi G., Previtali S.C. 2012. Urokinase plasminogen receptor and the fibrinolytic complex play a role in nerve repair after nerve crush in mice, and in human neuropathies. PLoS One. 7, e32059.

    Article  CAS  Google Scholar 

  25. Archinti M., Britto M., Eden G., Furlan F., Murphy R., Degryse B. 2011. The urokinase receptor in the central nervous system. CNS Neurol. Disord. Drug Targets. 10, 271‒294.

    Article  CAS  Google Scholar 

  26. Bruneau N., Szepetowski P. 2011. The role of the urokinase receptor in epilepsy, in disorders of language, cognition, communication and behavior, and in the central nervous system. Curr. Pharm. Des. 17, 1914‒1923.

    Article  CAS  Google Scholar 

  27. Sumi Y., Dent M.A., Owen D.E., Seeley P.J., Morris R.J. 1992. The expression of tissue and urokinase-type plasminogen activators in neural development suggests different modes of proteolytic involvement in neuronal growth. Development. 116, 625‒637.

    CAS  PubMed  Google Scholar 

  28. Venugopal C., Prasad Y., Shobha K., Pinnelli V.B., Dhanushkodi A. 2018. HEK-293 secretome attenuates kainic acid neurotoxicity through insulin like growth factor-phosphatidylinositol-3-kinases pathway and by temporal regulation of antioxidant defense machineries. Neurotoxicology. 69, 189‒200.

    Article  CAS  Google Scholar 

  29. Mukhina S., Stepanova V., Traktouev D., Poliakov A., Beabealashvilly R., Gursky Y., Minashkin M., Shevelev A., Tkachuk V. 2000. The chemotactic action of urokinase on smooth muscle cells is dependent on its kringle domain. Characterization of interactions and contribution to chemotaxis. J. Biol. Chem. 275, 16450‒16458.

    Article  CAS  Google Scholar 

  30. de Paulis A., Montuori N., Prevete N., Fiorentino I., Rossi F.W., Visconte V., Rossi G., Marone G., Ragno P. 2004. Urokinase induces basophil chemotaxis through a urokinase receptor epitope that is an endogenous ligand for formyl peptide receptor-like 1 and -like 2. J. Immunol. 173, 5739‒5748.

    Article  CAS  Google Scholar 

  31. Fazioli F., Resnati M., Sidenius N., Higashimoto Y., Appella E., Blasi F. 1997. A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J.16, 7279‒7286.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 17-04-00386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Semina.

Ethics declarations

All procedures performed in this work comply with the ethical standards of the institutional committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

Confict of interest. The authors declare they have no conflict of interest.

Additional information

Abbreviations: uPA, urokinase; uPAR, urokinase receptor; suPAR, soluble form of uPAR; GPI, glycosylphosphatidylinositol; ECM, extracellular matrix; DRG, dorsal root ganglion; CNS, central nervous system; IGF-1, insulin-like growth factor 1; GM-CMF, granulocyte macrophage colony stimulating factor; PT, pertussis toxin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimovich, P.S., Semina, E.V. Mechanisms of Participation of the Urokinase Receptor in Directed Axonal Growth. Mol Biol 54, 89–98 (2020). https://doi.org/10.1134/S0026893320010094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010094

Keywords:

Navigation